Observations of solar small-scale magnetic flux-sheet emergence

被引:11
|
作者
Fischer, C. E. [1 ]
Borrero, J. M. [1 ]
Gonzalez, N. Bello [1 ]
Kaithakkal, A. J. [1 ]
机构
[1] Kiepenheuer Inst Sonnenphys, Schoneckstr 6, D-79104 Freiburg, Germany
关键词
Sun: photosphere; Sun: magnetic fields; LOOPS;
D O I
10.1051/0004-6361/201834628
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. Two types of flux emergence were recently discovered in numerical simulations: magnetic loops and magnetic sheet emergence. While magnetic loop emergence has been documented well in recent years using high-resolution full Stokes data from ground-based telescopes as well as satellites, magnetic sheet emergence is still an understudied process. We report here on the first clear observational evidence of a magnetic sheet emergence and characterise its development. Methods. Full Stokes spectra from the Hinode spectropolarimeter were inverted with the Stokes Inversion based on Response functions (SIR) code to obtain solar atmospheric parameters such as temperature, line-of-sight velocities, and full magnetic field vector information. Results. We analyse a magnetic flux emergence event observed in the quiet-Sun internetwork. After a large-scale appearance of linear polarisation, a magnetic sheet with horizontal magnetic flux density of up to 194 Mx cm(-2) hovers in the low photosphere spanning a region of 2-3 arcsec. The magnetic field azimuth obtained through Stokes inversions clearly shows an organised structure of transversal magnetic flux density emerging. The granule below the magnetic flux sheet tears the structure apart leaving the emerged flux to form several magnetic loops at the edges of the granule. Conclusions. A large amount of flux with strong horizontal magnetic fields surfaces through the interplay of buried magnetic flux and convective motions. The magnetic flux emerges within 10 minutes and we find a longitudinal magnetic flux at the foot points of the order of similar to 10(18) Mx. This is one to two orders of magnitude larger than what has been reported for small-scale magnetic loops. The convective flows feed the newly emerged flux into the pre-existing magnetic population on a granular scale.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Nature of Turbulence inside Small-scale Magnetic Flux Ropes near the Sun: Parker Solar Probe Observations
    Shaikh, Zubair I.
    Vichare, Geeta
    Bhaskar, Ankush
    Raghav, Anil N.
    Bourouaine, Sofiane
    [J]. ASTROPHYSICAL JOURNAL, 2023, 959 (01):
  • [22] Radial evolution of the properties of small-scale magnetic flux ropes in the solar wind
    Hu, Qiang
    Chen, Yu
    le Roux, Jakobus
    [J]. 18TH ANNUAL INTERNATIONAL ASTROPHYSICS CONFERENCE, 2019, 1332
  • [23] Effects of Radial Distances on Small-scale Magnetic Flux Ropes in the Solar Wind
    Chen, Yu
    Hu, Qiang
    [J]. ASTROPHYSICAL JOURNAL, 2020, 894 (01):
  • [24] Spectral line radiation from solar small-scale magnetic flux tubes
    Kneer, F
    Hasan, SS
    Kalkofen, W
    [J]. ASTRONOMY & ASTROPHYSICS, 1996, 305 (02): : 660 - 668
  • [25] Small-Scale Solar Magnetic Fields
    A. G. de Wijn
    J. O. Stenflo
    S. K. Solanki
    S. Tsuneta
    [J]. Space Science Reviews, 2009, 144 : 275 - 315
  • [26] SMALL-SCALE MAGNETIC-FLUX TUBE DIAGNOSTICS IN A SOLAR-FLARE
    LOZITSKA, N
    LOZITSKIJ, V
    [J]. SOLAR PHYSICS, 1994, 151 (02) : 319 - 331
  • [27] Small-Scale Solar Magnetic Fields
    de Wijn, A. G.
    Stenflo, J. O.
    Solanki, S. K.
    Tsuneta, S.
    [J]. SPACE SCIENCE REVIEWS, 2009, 144 (1-4) : 275 - 315
  • [28] Observations of Small-scale Magnetic Reconnections within a Magnetic Flux Rope in Earth's Magnetosheath
    Li, Zhi
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2020, 898 (02)
  • [29] CHROMOSPHERIC SIGNATURES OF SMALL-SCALE FLUX EMERGENCE AS OBSERVED WITH NEW SOLAR TELESCOPE AND HINODE INSTRUMENTS
    Yurchyshyn, V. B.
    Goode, P. R.
    Abramenko, V. I.
    Chae, J.
    Cao, W.
    Andic, A.
    Ahn, K.
    [J]. ASTROPHYSICAL JOURNAL, 2010, 722 (02): : 1970 - 1976
  • [30] The structure of small-scale magnetic flux tubes
    Cameron, R
    Galloway, D
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 358 (03) : 1025 - 1035