A deep learning model for screening type 2 diabetes from retinal photographs

被引:8
|
作者
Yun, Jae-Seung [1 ,2 ]
Kim, Jaesik [1 ,3 ,4 ]
Jung, Sang-Hyuk [1 ,4 ,5 ]
Cha, Seon-Ah [2 ]
Ko, Seung-Hyun [2 ]
Ahn, Yu-Bae [2 ]
Won, Hong-Hee [3 ]
Sohn, Kyung-Ah [3 ,6 ]
Kim, Dokyoon [1 ,4 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Catholic Univ Korea, Coll Med, St Vincents Hosp, Div Endocrinol & Metab,Dept Internal Med, Seoul, South Korea
[3] Ajou Univ, Dept Comp Engn, Suwon, South Korea
[4] Univ Penn, Inst Biomed Informat, Philadelphia, PA 19104 USA
[5] Sungkyunkwan Univ, Samsung Med Ctr, Samsung Adv Inst Hlth Sci & Technol SAIHST, Seoul, South Korea
[6] Ajou Univ, Dept Artificial Intelligence, Suwon, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; Artificial intelligence; Type; 2; diabetes; Retina; Prediction; RISK-FACTORS; RETINOPATHY; PREDICTION; VALIDATION; MELLITUS; ADULTS;
D O I
10.1016/j.numecd.2022.01.010
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and aims: We aimed to develop and evaluate a non-invasive deep learning algorithm for screening type 2 diabetes in UK Biobank participants using retinal images. Methods and results: The deep learning model for prediction of type 2 diabetes was trained on retinal images from 50,077 UK Biobank participants and tested on 12,185 participants. We evaluated its performance in terms of predicting traditional risk factors (TRFs) and genetic risk for diabetes. Next, we compared the performance of three models in predicting type 2 diabetes using 1) an image-only deep learning algorithm, 2) TRFs, 3) the combination of the algorithm and TRFs. Assessing net reclassification improvement (NRI) allowed quantification of the improvement afforded by adding the algorithm to the TRF model. When predicting TRFs with the deep learning algorithm, the areas under the curve (AUCs) obtained with the validation set for age, sex, and HbA1c status were 0.931 (0.928-0.934), 0.933 (0.929-0.936), and 0.734 (0.715-0.752), respectively. When predicting type 2 diabetes, the AUC of the composite logistic model using non-invasive TRFs was 0.810 (0.790-0.830), and that for the deep learning model using only fundus images was 0.731 (0.707-0.756). Upon addition of TRFs to the deep learning algorithm, discriminative performance was improved to 0.844 (0.826-0.861). The addition of the algorithm to the TRFs model improved risk stratification with an overall NRI of 50.8%. Conclusion: Our results demonstrate that this deep learning algorithm can be a useful tool for stratifying individuals at high risk of type 2 diabetes in the general population. (C) 2022 The Italian Diabetes Society, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1218 / 1226
页数:9
相关论文
共 50 条
  • [21] Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms
    Rim, Tyler Hyungtaek
    Lee, Geunyoung
    Kim, Youngnam
    Tham, Yih-Chung
    Lee, Chan Joo
    Baik, Su Jung
    Kim, Yong Ah
    Yu, Marco
    Deshmukh, Mihir
    Lee, Byoung Kwon
    Park, Sungha
    Kim, Hyeon Chang
    Sabayanagam, Charumathi
    Ting, Daniel S. W.
    Wang, Ya Xing
    Jonas, Jost B.
    Kim, Sung Soo
    Wong, Tien Yin
    Cheng, Ching-Yu
    LANCET DIGITAL HEALTH, 2020, 2 (10): : E526 - E536
  • [22] Deep Learning Based Process Analytics Model for Predicting Type 2 Diabetes Mellitus
    Mohamed, A. Thasil
    Santhoshkumar, Sundar
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 40 (01): : 191 - 205
  • [23] Effect of ECG-gating Retinal Photographs on Retinal Vessel Caliber Measurements in Subjects with and without Type 2 Diabetes
    Lal, Anchal
    Dave, Neha
    Gibbs, Oliver J.
    Barry, Michael Anthony
    Sood, Annika
    Mitchell, Paul
    Thiagalingam, Aravinda
    CURRENT EYE RESEARCH, 2021, 46 (11) : 1742 - 1750
  • [24] Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images
    Zhang, Kang
    Liu, Xiaohong
    Xu, Jie
    Yuan, Jin
    Cai, Wenjia
    Chen, Ting
    Wang, Kai
    Gao, Yuanxu
    Nie, Sheng
    Xu, Xiaodong
    Qin, Xiaoqi
    Su, Yuandong
    Xu, Wenqin
    Olvera, Andrea
    Xue, Kanmin
    Li, Zhihuan
    Zhang, Meixia
    Zeng, Xiaoxi
    Zhang, Charlotte L.
    Li, Oulan
    Zhang, Edward E.
    Zhu, Jie
    Xu, Yiming
    Kermany, Daniel
    Zhou, Kaixin
    Pan, Ying
    Li, Shaoyun
    Lai, Iat Fan
    Chi, Ying
    Wang, Changuang
    Pei, Michelle
    Zang, Guangxi
    Zhang, Qi
    Lau, Johnson
    Lam, Dennis
    Zou, Xiaoguang
    Wumaier, Aizezi
    Wang, Jianquan
    Shen, Yin
    Hou, Fan Fan
    Zhang, Ping
    Xu, Tao
    Zhou, Yong
    Wang, Guangyu
    NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) : 533 - +
  • [25] Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images
    Kang Zhang
    Xiaohong Liu
    Jie Xu
    Jin Yuan
    Wenjia Cai
    Ting Chen
    Kai Wang
    Yuanxu Gao
    Sheng Nie
    Xiaodong Xu
    Xiaoqi Qin
    Yuandong Su
    Wenqin Xu
    Andrea Olvera
    Kanmin Xue
    Zhihuan Li
    Meixia Zhang
    Xiaoxi Zeng
    Charlotte L. Zhang
    Oulan Li
    Edward E. Zhang
    Jie Zhu
    Yiming Xu
    Daniel Kermany
    Kaixin Zhou
    Ying Pan
    Shaoyun Li
    Iat Fan Lai
    Ying Chi
    Changuang Wang
    Michelle Pei
    Guangxi Zang
    Qi Zhang
    Johnson Lau
    Dennis Lam
    Xiaoguang Zou
    Aizezi Wumaier
    Jianquan Wang
    Yin Shen
    Fan Fan Hou
    Ping Zhang
    Tao Xu
    Yong Zhou
    Guangyu Wang
    Nature Biomedical Engineering, 2021, 5 : 533 - 545
  • [26] Development of a deep learning algorithm for provision of a South Western Sydney diabetes retinal screening service
    Daley, Jason R.
    Wang, Xingdi
    Simmons, David
    Osuagwu, Uchechukwu L.
    Vellayutham, Vallimayil
    Khoo, Chee L.
    Heydon, Peter
    Liew, Gerald
    Andric, Marko
    Kaushik, Shweta
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 49 (08): : 805 - 805
  • [27] Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes (vol 30, pg 1904, 2023)
    Betzler, Bjorn Kaijun
    Chee, Evelyn Yi Lyn
    He, Feng
    Lim, Cynthia Ciwei
    Ho, Jinyi
    Hamzah, Haslina
    Tan, Ngiap Chuan
    Liew, Gerald
    McKay, Gareth J.
    Hogg, Ruth E.
    Young, Ian S.
    Cheng, Ching-Yu
    Lim, Su Chi
    Lee, Aaron Y.
    Wong, Tien Yin
    Lee, Mong Li
    Hsu, Wynne
    Tan, Gavin Siew Wei
    Sabanayagam, Charumathi
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (04) : 1047 - 1047
  • [28] Retinal proteome alterations in a mouse model of type 2 diabetes
    Alice Ly
    Markus F. Scheerer
    Sven Zukunft
    Caroline Muschet
    Juliane Merl
    Jerzy Adamski
    Martin Hrabě de Angelis
    Susanne Neschen
    Stefanie M. Hauck
    Marius Ueffing
    Diabetologia, 2014, 57 : 192 - 203
  • [29] Deep Learning System for Screening of Diabetic Retinopathy, Glaucoma and Age-related Macular Degeneration Using Retinal Photographs: The DEEP EYE Study
    Lim, Gilbert
    Ting, Daniel Shu Wei
    Cheung, Carol Yim-Lui
    Tan, Gavin S.
    Rudyanto, Rina
    Gan, Alfred Tau Liang
    Cheng, Ching-Yu
    Hsu, Wynne
    Lee, Mong Li
    Wong, Tien Yin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [30] Retinal proteome alterations in a mouse model of type 2 diabetes
    Ly, Alice
    Scheerer, Markus F.
    Zukunft, Sven
    Muschet, Caroline
    Merl, Juliane
    Adamski, Jerzy
    de Angelis, Martin Hrabe
    Neschen, Susanne
    Hauck, Stefanie M.
    Ueffing, Marius
    DIABETOLOGIA, 2014, 57 (01) : 192 - 203