A deep learning model for screening type 2 diabetes from retinal photographs

被引:8
|
作者
Yun, Jae-Seung [1 ,2 ]
Kim, Jaesik [1 ,3 ,4 ]
Jung, Sang-Hyuk [1 ,4 ,5 ]
Cha, Seon-Ah [2 ]
Ko, Seung-Hyun [2 ]
Ahn, Yu-Bae [2 ]
Won, Hong-Hee [3 ]
Sohn, Kyung-Ah [3 ,6 ]
Kim, Dokyoon [1 ,4 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Catholic Univ Korea, Coll Med, St Vincents Hosp, Div Endocrinol & Metab,Dept Internal Med, Seoul, South Korea
[3] Ajou Univ, Dept Comp Engn, Suwon, South Korea
[4] Univ Penn, Inst Biomed Informat, Philadelphia, PA 19104 USA
[5] Sungkyunkwan Univ, Samsung Med Ctr, Samsung Adv Inst Hlth Sci & Technol SAIHST, Seoul, South Korea
[6] Ajou Univ, Dept Artificial Intelligence, Suwon, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; Artificial intelligence; Type; 2; diabetes; Retina; Prediction; RISK-FACTORS; RETINOPATHY; PREDICTION; VALIDATION; MELLITUS; ADULTS;
D O I
10.1016/j.numecd.2022.01.010
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and aims: We aimed to develop and evaluate a non-invasive deep learning algorithm for screening type 2 diabetes in UK Biobank participants using retinal images. Methods and results: The deep learning model for prediction of type 2 diabetes was trained on retinal images from 50,077 UK Biobank participants and tested on 12,185 participants. We evaluated its performance in terms of predicting traditional risk factors (TRFs) and genetic risk for diabetes. Next, we compared the performance of three models in predicting type 2 diabetes using 1) an image-only deep learning algorithm, 2) TRFs, 3) the combination of the algorithm and TRFs. Assessing net reclassification improvement (NRI) allowed quantification of the improvement afforded by adding the algorithm to the TRF model. When predicting TRFs with the deep learning algorithm, the areas under the curve (AUCs) obtained with the validation set for age, sex, and HbA1c status were 0.931 (0.928-0.934), 0.933 (0.929-0.936), and 0.734 (0.715-0.752), respectively. When predicting type 2 diabetes, the AUC of the composite logistic model using non-invasive TRFs was 0.810 (0.790-0.830), and that for the deep learning model using only fundus images was 0.731 (0.707-0.756). Upon addition of TRFs to the deep learning algorithm, discriminative performance was improved to 0.844 (0.826-0.861). The addition of the algorithm to the TRFs model improved risk stratification with an overall NRI of 50.8%. Conclusion: Our results demonstrate that this deep learning algorithm can be a useful tool for stratifying individuals at high risk of type 2 diabetes in the general population. (C) 2022 The Italian Diabetes Society, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1218 / 1226
页数:9
相关论文
共 50 条
  • [1] Retinal vascular measures from diabetes retinal screening photographs and risk of incident dementia in type 2 diabetes: A GoDARTS study
    Doney, Alexander S. F.
    Nar, Aditya
    Huang, Yu
    Trucco, Emanuele
    MacGillivray, Tom
    Connelly, Peter P.
    Leese, Graham P.
    McKay, Gareth
    FRONTIERS IN DIGITAL HEALTH, 2022, 4
  • [2] Screening of Moyamoya Disease From Retinal Photographs: Development and Validation of Deep Learning Algorithms
    Hong, Jaeseong
    Yoon, Sangchul
    Shim, Kyu Won
    Park, Yu Rang
    STROKE, 2024, 55 (03) : 715 - 724
  • [3] Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes
    Betzler, Bjorn Kaijun
    Chee, Evelyn Yi Lyn
    He, Feng
    Lim, Cynthia Ciwei
    Ho, Jinyi
    Hamzah, Haslina
    Tan, Ngiap Chuan
    Liew, Gerald
    Mckay, Gareth J.
    Hogg, Ruth E.
    Young, Ian S.
    Cheng, Ching-Yu
    Lim, Su Chi
    Lee, Aaron Y.
    Wong, Tien Yin
    Lee, Mong Li
    Hsu, Wynne
    Tan, Gavin Siew Wei
    Sabanayagam, Charumathi
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2023, 30 (12) : 1904 - 1914
  • [4] Deep Learning for Automated Sorting of Retinal Photographs
    Rim, Tyler Hyungtaek
    Da Soh, Zhi
    Tham, Yih-Chung
    Yang, Henrik Hee Seung
    Lee, Geunyoung
    Kim, Youngnam
    Nusinovici, Simon
    Ting, Daniel Shu Wei
    Wong, Tien Yin
    Cheng, Ching-Yu
    OPHTHALMOLOGY RETINA, 2020, 4 (08): : 793 - 800
  • [5] Deep-learning prediction of cardiovascular outcomes from routine retinal images in individuals with type 2 diabetes
    Syed, Mohammad Ghouse
    Trucco, Emanuele
    Mookiah, Muthu R. K.
    Lang, Chim C.
    McCrimmon, Rory J.
    Palmer, Colin N. A.
    Pearson, Ewan R.
    Doney, Alex S. F.
    Mordi, Ify R.
    CARDIOVASCULAR DIABETOLOGY, 2025, 24 (01)
  • [6] Predicting sex from retinal fundus photographs using automated deep learning
    Korot, Edward
    Pontikos, Nikolas
    Liu, Xiaoxuan
    Wagner, Siegfried K.
    Faes, Livia
    Huemer, Josef
    Balaskas, Konstantinos
    Denniston, Alastair K.
    Khawaja, Anthony
    Keane, Pearse A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Detecting Glaucoma From Retinal Fundus Photographs Based on Deep Learning Models
    Islam, Md Rafiqul
    Sakib, Md Kowsar Hossain
    Kazemi, Ehsan
    Yousefi, Siamak
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [8] Predicting sex from retinal fundus photographs using automated deep learning
    Edward Korot
    Nikolas Pontikos
    Xiaoxuan Liu
    Siegfried K. Wagner
    Livia Faes
    Josef Huemer
    Konstantinos Balaskas
    Alastair K. Denniston
    Anthony Khawaja
    Pearse A. Keane
    Scientific Reports, 11
  • [9] Association of genetic risk scores with retinal vascular measurements from diabetes retinal screening photographs: A preliminary analysis
    Nar, A. S.
    Huang, Y.
    George, G.
    Hogg, S.
    Chourasia, M. K.
    Pradeepa, G.
    Trucco, E.
    Doney, A. S. F.
    DIABETIC MEDICINE, 2020, 37 : 182 - 182
  • [10] Deep learning detection of subclinical cardiovascular dysfunction in type 2 diabetes through retinal photography
    Alatrany, A.
    Lakhani, K.
    Cowley, A.
    Dattani, A.
    Yeo, J.
    Brady, E. M.
    Arnold, R.
    Mclean, R. J.
    Proudlock, F. A.
    Zhou, H.
    Mccann, G. P.
    Gulsin, G.
    EUROPEAN HEART JOURNAL, 2024, 45