The braided Ptolemy-Thompson group is asynchronously combable

被引:6
|
作者
Funar, Louis [1 ]
Kapoudjian, Christophe [2 ]
机构
[1] Univ Grenoble 1, Inst Fourier, UMR 5582, F-38402 St Martin Dheres, France
[2] Univ Toulouse 3, Lab Emile Picard, UMR 5580, F-31062 Toulouse 4, France
关键词
Mapping class groups; infinite surface; Thompson group; braid; MAPPING CLASS GROUP; GEOMETRY; FINITENESS; EXTENSION; ALGEBRA; STRAND;
D O I
10.4171/CMH/239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The braided Ptolemy-Thompson group T-star is an extension of the Thompson group T by the full braid group B-infinity on infinitely many strands and both of them can be viewed as mapping class groups of certain infinite planar surfaces. The main result of this article is that T-star (and in particular T) is asynchronously combable. The result is new already for the group T. The method of proof is inspired by Lee Mosher's proof of automaticity of mapping class groups.
引用
收藏
页码:707 / 768
页数:62
相关论文
共 50 条
  • [21] Some remarks on braided group reconstruction and braided doubles
    Majid, S
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1998, 48 (11) : 1447 - 1456
  • [22] Bi-orderings on pure braided Thompson's groups
    Burillo, Jose
    Gonzalez-Meneses, Juan
    QUARTERLY JOURNAL OF MATHEMATICS, 2008, 59 : 1 - 14
  • [23] Finiteness properties for relatives of braided Higman-Thompson groups
    Skipper, Rachel
    Wu, Xiaolei
    GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (04) : 1357 - 1391
  • [24] On the geometry of the Thompson group
    Martin, X
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (08): : 773 - 778
  • [25] Geometry of the Thompson group
    Ivanov, Alexander A.
    JOURNAL OF ALGEBRA, 2025, 661 : 778 - 806
  • [26] A Thompson group for the basilica
    Belk, James
    Forrest, Bradley
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (04) : 975 - 1000
  • [27] On the Thompson group factor
    Heo, J
    JOURNAL OF OPERATOR THEORY, 2005, 53 (01) : 185 - 195
  • [28] THE BRAIDED HEISENBERG-GROUP
    BASKERVILLE, WK
    MAJID, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) : 3588 - 3606
  • [29] The first braided homology group
    BenMessouda, F
    Haddi, A
    COMMUTATIVE RING THEORY, 1997, 185 : 97 - 104
  • [30] Associativity and Thompson's group
    Geoghegan, R
    Guzmán, F
    TOPOLOGICAL AND ASYMPTOTIC ASPECTS OF GROUP THEORY, 2006, 394 : 113 - +