Cauchy problem for non-autonomous fractional evolution equations

被引:3
|
作者
He, Jia Wei [1 ]
Zhou, Yong [2 ,3 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Peoples R China
[2] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[3] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau 999078, Peoples R China
关键词
Fractional calculus; Non-autonomous evolution equations; Solvability; Mittag-Leffler functions; WELL-POSEDNESS; WAVE-EQUATIONS; TIME; DIFFUSION; REGULARITY; CALCULUS;
D O I
10.1007/s13540-022-00094-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the solvability of Cauchy problem for a class of non-autonomous fractional evolution equation with Caputo's fractional derivative of order alpha is an element of (1, 2), which can be applied to model the time dependent coefficients fractional differential systems. We first introduce an operator family and analyze its properties, by the iterative method, we construct a solution to an operator-valued Volterra equation, which is the most critical ingredient to prove solvability of the problem. Finally, based on the solution operators we establish the existence and uniqueness of classical solutions.
引用
收藏
页码:2241 / 2274
页数:34
相关论文
共 50 条
  • [31] On evolution equations governed by non-autonomous forms
    El-Mennaoui, Omar
    Laasri, Hafida
    [J]. ARCHIV DER MATHEMATIK, 2016, 107 (01) : 43 - 57
  • [32] Inertial Manifolds for Non-autonomous Evolution Equations
    王宗信
    范先令
    [J]. 数学进展, 1997, (02) : 90 - 91
  • [33] On non-autonomous abstract nonlinear fractional differential equations
    Pierri, Michelle
    O'Regan, Donal
    [J]. APPLICABLE ANALYSIS, 2015, 94 (05) : 879 - 890
  • [34] Operator splitting for non-autonomous evolution equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    Nickel, Gregor
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) : 2163 - 2190
  • [35] Attractors of approximations to non-autonomous evolution equations
    Ipatova, VM
    [J]. SBORNIK MATHEMATICS, 1997, 188 (5-6) : 843 - 852
  • [36] On evolution equations governed by non-autonomous forms
    Omar El-Mennaoui
    Hafida Laasri
    [J]. Archiv der Mathematik, 2016, 107 : 43 - 57
  • [37] Non-autonomous evolution equations on nonsmooth domains
    Mehmeti, FA
    Nicaise, S
    [J]. MATHEMATISCHE NACHRICHTEN, 1998, 192 : 37 - 70
  • [38] Maximal regularity for non-autonomous evolution equations
    Bernhard H. Haak
    El Maati Ouhabaz
    [J]. Mathematische Annalen, 2015, 363 : 1117 - 1145
  • [39] Maximal regularity for non-autonomous evolution equations
    Haak, Bernhard H.
    Ouhabaz, El Maati
    [J]. MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 1117 - 1145
  • [40] Existence and Controllability of a Class of Non-autonomous Nonlinear Evolution Fractional Integrodifferential Equations with Delay
    Mishra, Kamla Kant
    Dubey, Shruti
    Baleanu, Dumitru
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)