Iodine chemistry in the chemistry-climate model SOCOL-AERv2-I

被引:11
|
作者
Karagodin-Doyennel, Arseniy [1 ,2 ]
Rozanov, Eugene [1 ,2 ,3 ]
Sukhodolov, Timofei [2 ,3 ,4 ]
Egorova, Tatiana [2 ]
Saiz-Lopez, Alfonso [5 ]
Cuevas, Carlos A. [5 ]
Fernandez, Rafael P. [5 ,6 ]
Sherwen, Tomas [7 ,8 ]
Volkamer, Rainer [1 ,9 ,10 ,11 ]
Koenig, Theodore K. [9 ,10 ]
Giroud, Tanguy [1 ]
Peter, Thomas [1 ]
机构
[1] Inst Atmospher & Climate Sci IAC ETH, Zurich, Switzerland
[2] Phys Meteorol Observ Davos, World Radiat Ctr PMOD WRC, Davos, Switzerland
[3] St Petersburg State Univ, St Petersburg, Russia
[4] Univ Nat Resources & Life Sci, Inst Meteorol & Climatol, Vienna, Austria
[5] IQFR CSIC, Dept Atmospher Chem & Climate, Madrid, Spain
[6] Natl Res Council ICB CONICET, FCEN UNCuyo, Inst Interdisciplinary Sci, Mendoza, Argentina
[7] Univ York, Natl Ctr Atmospher Sci, York YO10 5DD, N Yorkshire, England
[8] Univ York, Wolfson Atmospher Chem Labs, York YO10 5DD, N Yorkshire, England
[9] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[10] Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[11] Paul Scherrer Inst, Lab Radiochem & Environm Chem, CH-5232 Villigen, Switzerland
基金
美国国家科学基金会;
关键词
ABSORPTION CROSS-SECTIONS; STRATOSPHERIC OZONE; TROPOSPHERIC OZONE; AEROSOL EXTINCTION; HALOGEN CHEMISTRY; POTENTIAL IMPACT; IN-SITU; BROMINE; EMISSIONS; LAYER;
D O I
10.5194/gmd-14-6623-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we present a new version of the chemistry-climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %-4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %-10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %-2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.
引用
收藏
页码:6623 / 6645
页数:23
相关论文
共 50 条
  • [21] Accelerated Chemical Kinetics in the EMAC Chemistry-Climate Model
    Christoudias, Theodoros
    Vans, Michail A.
    [J]. 2016 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS 2016), 2016, : 886 - 889
  • [22] Chemistry-climate model simulations of spring Antarctic ozone
    Austin, John
    Struthers, H.
    Scinocca, J.
    Plummer, D. A.
    Akiyoshi, H.
    Baumgaertner, A. J. G.
    Bekki, S.
    Bodeker, G. E.
    Braesicke, P.
    Bruehl, C.
    Butchart, N.
    Chipperfield, M. P.
    Cugnet, D.
    Dameris, M.
    Dhomse, S.
    Frith, S.
    Garny, H.
    Gettelman, A.
    Hardiman, S. C.
    Joeckel, P.
    Kinnison, D.
    Kubin, A.
    Lamarque, J. F.
    Langematz, U.
    Mancini, E.
    Marchand, M.
    Michou, M.
    Morgenstern, O.
    Nakamura, T.
    Nielsen, J. E.
    Pitari, G.
    Pyle, J.
    Rozanov, E.
    Shepherd, T. G.
    Shibata, K.
    Smale, D.
    Teyssedre, H.
    Yamashita, Y.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [23] Sensitivity of stratospheric dynamics and chemistry to QBO nudging width in the chemistry-climate model WACCM
    Hansen, F.
    Matthes, K.
    Gray, L. J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (18) : 10464 - 10474
  • [24] Investigation and forecast of Sudden Stratospheric Warming events with chemistry climate model SOCOL
    Tsvetkova, N. D.
    Vyzankin, A. S.
    Vargin, P. N.
    Lukyanov, A. N.
    Yushkov, V. A.
    [J]. CLIMATE CHANGE: CAUSES, RISKS, CONSEQUENCES, PROBLEMS OF ADAPTATION AND MANAGEMENT, 2020, 606
  • [25] The millennium water vapour drop in chemistry-climate model simulations
    Brinkop, Sabine
    Dameris, Martin
    Joeckel, Patrick
    Garny, Hella
    Lossow, Stefan
    Stiller, Gabriele
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (13) : 8125 - 8140
  • [26] Global Chemistry-Climate Modelling with EMAC
    Sausen, R.
    Deckert, R.
    Joeckel, P.
    Aquila, V.
    Brinkop, S.
    Burkhardt, U.
    Cionni, I.
    Dall'Amico, M.
    Dameris, M.
    Dietmueller, S.
    Eyring, V.
    Gottschaldt, K.
    Grewe, V.
    Hendricks, J.
    Ponater, M.
    Righi, M.
    [J]. HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, GARCHING/MUNICH 2009: TRANSACTIONS OF THE FOURTH JOINT HLRB AND KONWIHR REVIEW AND RESULTS WORKSHOP, 2010, : 663 - 674
  • [27] Implications of Lagrangian transport for simulations with a coupled chemistry-climate model
    Stenke, A.
    Dameris, M.
    Grewe, V.
    Garny, H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (15) : 5489 - 5504
  • [28] The evolution of zonally asymmetric austral ozone in a chemistry-climate model
    Dennison, Fraser
    McDonald, Adrian
    Morgenstern, Olaf
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (22) : 14075 - 14084
  • [29] Stratospheric water vapor trends in a coupled chemistry-climate model
    Tian, WS
    Chipperfield, MP
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (06)
  • [30] Implementation of HONO into the chemistry-climate model CHASER (V4.0): roles in tropospheric chemistry
    Ha, Phuc Thi Minh
    Kanaya, Yugo
    Taketani, Fumikazu
    Hernandez, Maria Dolores Andres
    Schreiner, Benjamin
    Pfeilsticker, Klaus
    Sudo, Kengo
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (03) : 927 - 960