Products of derangements in simple permutation groups

被引:1
|
作者
Larsen, Michael [1 ]
Shalev, Aner [2 ]
Tiep, Pham Huu [3 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
英国工程与自然科学研究理事会;
关键词
20D06; 20F69; 20G40; 20P05; 20B15; 20C33; POINT FREE ELEMENTS; INVARIABLE GENERATION; UNIPOTENT CHARACTERS; CONJUGACY CLASSES; WARING PROBLEM; FINITE-GROUPS; BOUNDS; REPRESENTATIONS; DUALITY; VALUES;
D O I
10.1017/fms.2022.69
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any element in a sufficiently large transitive finite simple permutation group is a product of two derangements.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] The multiplicity-free permutation characters of the sporadic simple groups and their automorphism groups
    Breuer, T
    Lux, K
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (07) : 2293 - 2316
  • [42] ON THE MAXIMUM ORDERS OF ELEMENTS OF FINITE ALMOST SIMPLE GROUPS AND PRIMITIVE PERMUTATION GROUPS
    Guest, Simon
    Morris, Joy
    Praeger, Cheryl E.
    Spiga, Pablo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (11) : 7665 - 7694
  • [43] Groups generated by derangements
    Bailey, R. A.
    Cameron, Peter J.
    Giudici, Michael
    Royle, Gordon F.
    JOURNAL OF ALGEBRA, 2021, 572 : 245 - 262
  • [44] Transitive characteristically simple subgroups of finite quasiprimitive permutation groups
    Daldegan, Pedro H. P.
    Schneider, Csaba
    JOURNAL OF ALGEBRA, 2020, 545 : 135 - 158
  • [45] Minimal permutation representations of finite simple exceptional twisted groups
    Vasilyev A.V.
    Algebra and Logic, 1998, 37 (1) : 9 - 20
  • [46] Total closure for permutation actions of finite nonabelian simple groups
    Saul D. Freedman
    Michael Giudici
    Cheryl E. Praeger
    Monatshefte für Mathematik, 2024, 203 : 323 - 340
  • [47] One point stabilizers in almost simple sharp permutation groups
    Brozovic, DP
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (04) : 2103 - 2129
  • [48] Total closure for permutation actions of finite nonabelian simple groups
    Freedman, Saul. D. D.
    Giudici, Michael
    Praeger, Cheryl. E. E.
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (02): : 323 - 340
  • [49] Arities of permutation groups: Wreath products and k-sets
    Cherlin, GL
    Martin, GA
    Saracino, DH
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 74 (02) : 249 - 286
  • [50] GROUPS WHICH ARE PRODUCTS OF FINITE SIMPLE-GROUPS
    WALLS, GL
    ARCHIV DER MATHEMATIK, 1988, 50 (01) : 1 - 4