Products of derangements in simple permutation groups

被引:1
|
作者
Larsen, Michael [1 ]
Shalev, Aner [2 ]
Tiep, Pham Huu [3 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
英国工程与自然科学研究理事会;
关键词
20D06; 20F69; 20G40; 20P05; 20B15; 20C33; POINT FREE ELEMENTS; INVARIABLE GENERATION; UNIPOTENT CHARACTERS; CONJUGACY CLASSES; WARING PROBLEM; FINITE-GROUPS; BOUNDS; REPRESENTATIONS; DUALITY; VALUES;
D O I
10.1017/fms.2022.69
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any element in a sufficiently large transitive finite simple permutation group is a product of two derangements.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Derangements in wreath products of permutation groups
    Arumugam, Vishnuram
    Dietrich, Heiko
    Glasby, S. P.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 1 - 22
  • [2] Derangements in wreath products of permutation groups
    Vishnuram Arumugam
    Heiko Dietrich
    S. P. Glasby
    Journal of Algebraic Combinatorics, 2024, 59 : 1 - 22
  • [3] Derangements in cosets of primitive permutation groups
    Pavelescu, Andrei
    JOURNAL OF GROUP THEORY, 2015, 18 (01) : 143 - 154
  • [4] Prime order derangements in primitive permutation groups
    Burness, Timothy C.
    Giudici, Michael
    Wilson, Robert A.
    JOURNAL OF ALGEBRA, 2011, 341 (01) : 158 - 178
  • [5] Permutation groups and derangements of odd prime order
    Burness, Timothy C.
    Giudici, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 151 : 102 - 130
  • [6] Primitive permutation groups and derangements of prime power order
    Burness, Timothy C.
    Tong-Viet, Hung P.
    MANUSCRIPTA MATHEMATICA, 2016, 150 (1-2) : 255 - 291
  • [7] DERANGEMENTS IN PRIMITIVE PERMUTATION GROUPS, WITH AN APPLICATION TO CHARACTER THEORY
    Burness, Timothy C.
    Tong-Viet, Hung P.
    QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (01): : 63 - 96
  • [8] Primitive permutation groups and derangements of prime power order
    Timothy C. Burness
    Hung P. Tong-Viet
    Manuscripta Mathematica, 2016, 150 : 255 - 291
  • [9] Transitive permutation groups in which all derangements are involutions
    Isaacs, I. M.
    Keller, Thomas Michael
    Lewis, Mark L.
    Moreto, Alexander
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (03) : 717 - 724
  • [10] Simple groups, permutation groups, and probability
    Liebeck, MW
    Shalev, A
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (02) : 497 - 520