Phase-locking of a harmonically forced self-oscillating system

被引:1
|
作者
Wielaard, DJ [1 ]
Triantafyllou, GS [1 ]
机构
[1] CUNY CITY COLL, BENJAMIN LEVICH INST, NEW YORK, NY 10031 USA
关键词
self-oscillating systems; Landau equation;
D O I
10.1016/0167-2789(95)00238-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the bifurcation diagram for solutions of the forced Landau equation [d/dt - 1 + i omega + (1 + ic(3))/Psi/(2)]Psi = F-0, for c(3) not equal 0. The bifurcations of the phase locked states (fixed points) are obtained analytically for all parameter values. Bistable regions exist in the bifurcation diagram consisting of phase locked solutions alone as well as a phase locked and a periodic solution, sometimes accompanied by a repelling closed orbit.
引用
收藏
页码:197 / 202
页数:6
相关论文
共 50 条
  • [31] TRANSIENT PROCESS TIME IN THE INTERCONNECTED PHASE-LOCKING SYSTEM
    SMIRNOV, NI
    CHURKIN, YI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1988, 31 (11): : 52 - 55
  • [32] Application of self-oscillating system for stress measurement in metal
    Kwasniewki, Janusz
    Dominik, Ireneusz
    Lalik, Krzysztof
    JOURNAL OF VIBROENGINEERING, 2012, 14 (01) : 61 - 66
  • [33] THEORY OF SIMPLEST SYSTEM OF SELF-OSCILLATING AUTOMATIC CONTROL
    LEONOV, NN
    AUTOMATION AND REMOTE CONTROL, 1965, 26 (10) : 1666 - &
  • [34] Self-oscillating system generating rough hyperbolic chaos
    Kuznetsov, S. P.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2019, 27 (06): : 39 - 62
  • [35] FORCED-OSCILLATIONS OF A SELF-OSCILLATING BIMOLECULAR SURFACE-REACTION MODEL
    MCKARNIN, MA
    SCHMIDT, LD
    ARIS, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1988, 417 (1853) : 363 - 388
  • [36] Self-Oscillating Converter Based on Phase Tracking Closed Loop for a Dynamic IPT System
    Chen, Lin
    Luo, Daqing
    Hong, Jianfeng
    Guan, Mingjie
    Chen, Wenxiang
    ENERGIES, 2024, 17 (08)
  • [37] ESSAY ON THE STUDY OF THE SELF-OSCILLATING REGIME IN THE CONTROL SYSTEM
    Korolkova, Anna V.
    Kulyabov, Dmitry S.
    Velieva, Tatyana R.
    Zaryadov, Ivan S.
    PROCEEDINGS OF THE 33RD INTERNATIONAL ECMS CONFERENCE ON MODELLING AND SIMULATION (ECMS 2019), 2019, 33 (01): : 473 - 480
  • [38] Determination of External Harmonic Effect on a Self-Oscillating System
    Zhogoleva N.V.
    Shcherbak V.F.
    International Applied Mechanics, 2023, 59 (02) : 238 - 244
  • [39] DETERMINATION OF THE MOMENTS OF INERTIA WITH A SELF-OSCILLATING ELECTROMECHANICAL SYSTEM
    KOPEIKIN, AI
    MALAFEEV, SI
    MEASUREMENT TECHNIQUES USSR, 1994, 37 (04): : 413 - 416
  • [40] FORMS OF MOVEMENT FOR A PARAMETRICALLY EXCITABLE SELF-OSCILLATING SYSTEM
    PLAKHTIENKO, NP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1977, (08): : 724 - 729