Robustness of full implication algorithms based on interval-valued fuzzy inference

被引:34
|
作者
Luo, Minxia [1 ]
Zhang, Kai [1 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Interval-valued fuzzy set; Interval-valued fuzzy inference; Triple I algorithm; Robustness; Interval-valued fuzzy connectives; T-NORMS; LOGIC FOUNDATION; REPRESENTATION; OPERATORS; SYSTEMS; DESIGN;
D O I
10.1016/j.ijar.2015.05.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new full implication algorithm based on interval-valued fuzzy inference which extends the triple I principle for fuzzy inference based on fuzzy modus ponens and fuzzy modus tollens to the case of interval-valued fuzzy sets is presented. We first give the corresponding interval-valued R-type triple I solutions and then investigate the robustness of triple I algorithms based on interval-valued fuzzy sets for fuzzy inference. The sensitivity of some special algorithms based on four important interval-valued residuated implication is given. It is shown that the robustness of interval-valued full implication algorithms for fuzzy inference directly depends on the selection of interval-valued fuzzy connectives. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [31] Quintuple Implication Principle on interval-valued intuitionistic fuzzy sets
    Jianhua Jin
    Mingfei Ye
    Witold Pedrycz
    [J]. Soft Computing, 2020, 24 : 12091 - 12109
  • [32] Quintuple Implication Principle on interval-valued intuitionistic fuzzy sets
    Jin, Jianhua
    Ye, Mingfei
    Pedrycz, Witold
    [J]. SOFT COMPUTING, 2020, 24 (16) : 12091 - 12109
  • [33] A constructive method for the definition of interval-valued fuzzy implication operators
    Alcalde, C
    Burusco, A
    Fuentes-González, R
    [J]. FUZZY SETS AND SYSTEMS, 2005, 153 (02) : 211 - 227
  • [34] Towards interval-valued fuzzy set-based collaborative fuzzy clustering algorithms
    Long Thanh Ngo
    Trong Hop Dang
    Pedrycz, Witold
    [J]. PATTERN RECOGNITION, 2018, 81 : 404 - 416
  • [35] Interval-valued fuzzy derivatives and solution to interval-valued fuzzy differential equations
    Kalani, Hadi
    Akbarzadeh-T, Mohammad-R.
    Akbarzadeh, Alireza
    Kardan, Iman
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (06) : 3373 - 3384
  • [36] Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semigroups
    Narayanan Al.
    Manikantan T.
    [J]. Journal of Applied Mathematics and Computing, 2006, 20 (1-2) : 455 - 464
  • [37] Interval-valued Fuzzy Subsemigroups and Subgroups Associated by Interval-valued Fuzzy Graphs
    Ju Hongmei
    Wang Lianhua
    [J]. PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL I, 2009, : 484 - 487
  • [38] AN INTERVAL-VALUED FUZZY INFERENCE METHOD - SOME BASIC PROPERTIES
    GORZALCZANY, MB
    [J]. FUZZY SETS AND SYSTEMS, 1989, 31 (02) : 243 - 251
  • [39] Nearest Interval-Valued Approximation of Interval-Valued Fuzzy Numbers
    Ahmadian, A.
    Senu, N.
    Salahshour, S.
    Suleiman, M.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2016, 10 : 325 - 336
  • [40] Partitioning fuzzy clustering algorithms for interval-valued data based on Hausdorff distances
    de Carvalho, Francisco de A. T.
    Pimentel, Julio T.
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1379 - 1384