Uncertain maximum likelihood estimation with application to uncertain regression analysis

被引:61
|
作者
Lio, Waichon [1 ]
Liu, Baoding [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty theory; Regression analysis; Maximum likelihood estimation; Imprecise observation;
D O I
10.1007/s00500-020-04951-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Regression analysis is a mathematical tool to estimate the relationship between explanatory variables and response variable. This paper defines a likelihood function in the sense of uncertain measure to represent the likelihood of unknown parameters. Furthermore, the method of maximum likelihood estimation is used for the parameter estimation of uncertain regression models, and the uncertainty distribution of the disturbance term is simultaneously calculated. Finally, some numerical examples are documented to illustrate the proposed method.
引用
收藏
页码:9351 / 9360
页数:10
相关论文
共 50 条
  • [31] APPLICATION OF MAXIMUM LIKELIHOOD TO NON-LINEAR REGRESSION-ANALYSIS
    QUEDNAU, HD
    BIOMETRISCHE ZEITSCHRIFT, 1975, 17 (04): : 225 - 231
  • [32] Uncertain Box-Cox Regression Analysis With Rescaled Least Squares Estimation
    Liu, Shiqin
    Fang, Liang
    Zhou, Zaiying
    Hong, Yiping
    IEEE ACCESS, 2020, 8 : 84769 - 84776
  • [33] A fast maximum likelihood estimation approach to LAD regression
    Li, YB
    Arce, GR
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 889 - 892
  • [34] Maximum likelihood estimation of endogenous switching regression models
    Lokshin, Michael
    Sajaia, Zurab
    STATA JOURNAL, 2004, 4 (03): : 282 - 289
  • [35] On maximum likelihood estimation in parametric regression with missing covariates
    Zhang, ZW
    Rockette, HE
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 134 (01) : 206 - 223
  • [36] Maximum likelihood estimation of misclassification rates of a binomial regression
    Lloyd, CJ
    BIOMETRIKA, 2000, 87 (03) : 700 - 705
  • [37] Maximum likelihood estimation based regression for multivariate calibration
    Guo, Lu
    Peng, Jiangtao
    Xie, Qiwei
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 189 : 316 - 321
  • [38] Proportional odds regression and sieve maximum likelihood estimation
    Shen, XT
    BIOMETRIKA, 1998, 85 (01) : 165 - 177
  • [39] MAXIMUM-LIKELIHOOD ESTIMATION OF ISOTONIC MODAL REGRESSION
    SAGER, TW
    THISTED, RA
    ANNALS OF STATISTICS, 1982, 10 (03): : 690 - 707
  • [40] The Estimation of Uncertain Gates: An Application to Educational Indicators
    Petiot, Guillaume
    ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 324 - 334