Tracking the Optimal Sequence of Predictive Strategies

被引:0
|
作者
V'yugin, V. V. [1 ]
Trunov, V. G. [1 ]
机构
[1] Russian Acad Sci, Kharkevich Inst Informat Transmiss Problems, Moscow 127051, Russia
基金
俄罗斯科学基金会;
关键词
online loss distribution algorithms; predictions using expert strategies; mixing schemes for posterior expert distributions; adaptive learning parameter;
D O I
10.1134/S1064226918120240
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Within the prediction (decision making) theory with online experts, an adaptive algorithm is proposed that aggregates the decisions of expert strategies and incurs losses that do not exceed (up to a certain value, called a regret) the losses of the best combination of experts distributed over the prediction interval. The algorithm develops the Mixing Past Posteriors method and the AdaHedge algorithm of exponential weighting of expert decisions using an adaptive learning parameter. An estimate of the regret of the proposed algorithm is obtained. The approach proposed does not make assumptions about the nature of the data source and the limits of experts' losses. The results of numerical experiments on mixing expert solutions using the proposed algorithm under conditions of high volatility of experts' losses are given.
引用
收藏
页码:1491 / 1501
页数:11
相关论文
共 50 条
  • [1] Tracking the Optimal Sequence of Predictive Strategies
    V. V. V’yugin
    V. G. Trunov
    [J]. Journal of Communications Technology and Electronics, 2018, 63 : 1491 - 1501
  • [2] Tracking by an Optimal Sequence of Linear Predictors
    Zimmermann, Karel
    Matas, Jiri
    Svoboda, Tomas
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (04) : 677 - 692
  • [3] Optimal tracking interval for predictive tracking in wireless sensor network
    Guo, Z
    Zhou, MC
    Zakrevski, L
    [J]. IEEE COMMUNICATIONS LETTERS, 2005, 9 (09) : 805 - 807
  • [4] Optimal tracking strategies in a turbulent flow
    Calascibetta, Chiara
    Biferale, Luca
    Borra, Francesco
    Celani, Antonio
    Cencini, Massimo
    [J]. COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [5] Optimal tracking strategies in a turbulent flow
    Chiara Calascibetta
    Luca Biferale
    Francesco Borra
    Antonio Celani
    Massimo Cencini
    [J]. Communications Physics, 6
  • [6] Asymptotic optimal tracking: feedback strategies
    Cai, Jiatu
    Rosenbaum, Mathieu
    Tankov, Peter
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (6-7): : 943 - 966
  • [7] Optimal Predictive Control Strategies for Polygeneration Systems
    Menon, Ramanunni P.
    Marechal, Francois
    [J]. PRES 2012: 15TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2012, 29 : 913 - 918
  • [8] TERRAIN TRACKING BASED ON OPTIMAL AIM STRATEGIES
    BARNARD, R
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 1994, 15 (02): : 145 - 150
  • [9] Optimal move blocking strategies for model predictive control
    Shekhar, Rohan C.
    Manzie, Chris
    [J]. AUTOMATICA, 2015, 61 : 27 - 34
  • [10] Fusion of inverse optimal and model predictive control strategies
    Ulusoy, Luetfi
    Guzelkaya, Mujde
    Eksin, Ibrahim
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020, 42 (06) : 1122 - 1134