Convolution quadrature Galerkin boundary element method for the wave equation with reduced quadrature weight computation

被引:5
|
作者
Chappell, David J. [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
boundary element method; wave equation; convolution quadrature; DISCRETIZED OPERATIONAL CALCULUS; TIME MARCHING METHODS; INTEGRAL-EQUATIONS; SCATTERING; STABILITY; PROPAGATION; FORMULATION; BEM;
D O I
10.1093/imanum/drp045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of the wave equation on three-dimensional domains is calculated using the convolution quadrature method for the time discretization and a Galerkin boundary element method for the space discretization. A computation-reduction strategy is developed whose parameters are given by an a priori error analysis. This gives a maximum for the number of discrete convolution matrices that must be computed when a particular time step is employed. Numerical examples are then presented to illustrate the predicted convergence results and the practicality of the methods.
引用
收藏
页码:640 / 666
页数:27
相关论文
共 50 条
  • [21] Quasi-static poroelastic boundary element formulation based on the convolution quadrature method
    Schanz, M
    Rüberg, T
    Struckmeier, V
    COMPUTATIONAL MECHANICS, 2005, 37 (01) : 70 - 77
  • [22] On superconvergence of Runge-Kutta convolution quadrature for the wave equation
    Melenk, Jens Markus
    Rieder, Alexander
    NUMERISCHE MATHEMATIK, 2021, 147 (01) : 157 - 188
  • [23] Boundary-type quadrature and boundary element method
    He, TX
    Zhang, R
    Zhou, YS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) : 19 - 41
  • [24] MULTISTEP AND MULTISTAGE CONVOLUTION QUADRATURE FOR THE WAVE EQUATION: ALGORITHMS AND EXPERIMENTS
    Banjai, Lehel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05): : 2964 - 2994
  • [25] Differential quadrature and generalized integral quadrature method for solving the Howarth boundary equation
    Zhang, Tao
    Yang, Yi-Ren
    Li, Peng
    Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering Science Edition), 2010, 42 (SUPPL. 2): : 178 - 180
  • [26] Convolution quadrature boundary element method for quasi-static visco- and poroelastic continua
    Schanz, M
    Antes, H
    Rüberg, T
    COMPUTERS & STRUCTURES, 2005, 83 (10-11) : 673 - 684
  • [27] Generalised adaptive cross approximation for convolution quadrature based boundary element formulation
    Haider, A. M.
    Rjasanow, S.
    Schanz, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 175 : 470 - 486
  • [28] A Petrov-Galerkin method with quadrature for elliptic boundary value problems
    Bialecki, B
    Ganesh, M
    Mustapha, K
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) : 157 - 177
  • [29] A quadrature-free discontinuous Galerkin method for the level set equation
    Marchandise, E
    Remacle, JF
    Chevaugeon, N
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 338 - 357
  • [30] Elastic Wave Propagation Analysis Using the Space-Time Discontinuous Galerkin Quadrature Element Method
    Liao, Minmao
    Wei, Jie
    Zhao, Jiaze
    Fan, Wensu
    JOURNAL OF ENGINEERING MECHANICS, 2024, 150 (10)