Quantum Ratchet in Disordered Quantum Walk

被引:8
|
作者
Chakraborty, Sagnik [1 ,2 ]
Das, Arpan [2 ,3 ]
Mallick, Arindam [1 ,2 ]
Chandrashekar, C. M. [1 ,2 ]
机构
[1] Inst Math Sci, CIT Campus, Madras 600113, Tamil Nadu, India
[2] Homi Bhabha Natl Inst, Training Sch Complex, Bombay 400094, Maharashtra, India
[3] Inst Phys, PO Sainik Sch, Bhubaneswar 751005, Orissa, India
关键词
quantum ratchet; quantum transport; temporal disorder quantum walk; ANDERSON LOCALIZATION; TRANSPORT; IONIZATION; DIFFUSION; MOTORS; ATOMS;
D O I
10.1002/andp.201600346
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symmetrically evolving discrete quantum walk results in dynamic localization with zero mean displacement when the standard evolution operations are replaced by a temporal disorder evolution operation. In this work we show that the quantum ratchet action, that is, a directed transport in standard or disordered discrete-time quantum walk can be realized by introducing a pawl like effect realized by using a fixed coin operation at marked positions that is, different from the ones used for evolution at other positions. We also show that the combination of standard and disordered evolution operations can be optimized to get the mean displacement of order alpha t (number of walk steps). This model of quantum ratchet in quantum walk is defined using only a set of entangling unitary operators resulting in the coherent quantum transport.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum ratchet with Lindblad rate equations
    Castanos-Cervantes, Luis Octavio
    Casado-Pascual, Jesus
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [42] PARAMETRIC QUANTUM SEARCH ALGORITHM AS QUANTUM WALK: A QUANTUM SIMULATION
    Ellinas, Demosthenes
    Konstandakis, Christos
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 105 - 128
  • [43] Floquet chiral quantum walk in a quantum computer
    Bark, Chan Bin
    Kim, Youngseok
    Park, Moon Jip
    PHYSICAL REVIEW B, 2024, 109 (20)
  • [44] Universal quantum computation by discontinuous quantum walk
    Underwood, Michael S.
    Feder, David L.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [45] Topological quantum scheme based on quantum walk
    Kwan, Andis Chi Tung
    Li, Xiangdong
    Leung, Lin
    Ansheld, Michael
    QUANTUM INFORMATION AND COMPUTATION V, 2007, 6573
  • [46] Quantum walk in terms of quantum Bernoulli noises
    Caishi Wang
    Xiaojuan Ye
    Quantum Information Processing, 2016, 15 : 1897 - 1908
  • [47] Quantum walk in terms of quantum Bernoulli noises
    Wang, Caishi
    Ye, Xiaojuan
    QUANTUM INFORMATION PROCESSING, 2016, 15 (05) : 1897 - 1908
  • [48] Quantum walk on a cylinder
    Bru, Luis A.
    de Valcarcel, German J.
    Di Molfetta, Giuseppe
    Perez, Armando
    Roldan, Eugenio
    Silva, Fernando
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [49] Quantum walk with jumps
    Lavicka, H.
    Potocek, V.
    Kiss, T.
    Lutz, E.
    Jex, I.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 64 (01): : 119 - 129
  • [50] Randomizing Quantum Walk
    Anwar Zaman
    Rashid Ahmad
    Safia Bibi
    Sajid Khan
    International Journal of Theoretical Physics, 61