Force tracking control for motion synchronization in human-robot collaboration

被引:31
|
作者
Li, Yanan [1 ]
Ge, Shuzhi Sam [2 ,3 ]
机构
[1] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore 138632, Singapore
[2] Natl Univ Singapore, Interact Digital Media Inst, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] Natl Univ Singapore, Interact Digital Media Inst, Social Robot Lab, Singapore 117576, Singapore
关键词
Motion synchronization; Human-robot collaboration; Force tracking; ARM-MANIPULATOR COORDINATION; IMPEDANCE CONTROL; VELOCITY; IMPACT;
D O I
10.1017/S0263574714002240
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, motion synchronization is investigated for human-robot collaboration such that the robot is able to "actively" follow its human partner. Force tracking is achieved with the proposed method under the impedance control framework, subject to uncertain human limb dynamics. Adaptive control is developed to deal with point-to-point movement, and learning control and neural networks control are developed to generate periodic and arbitrary continuous trajectories, respectively. Stability and tracking performance of the closed-loop system are discussed through rigorous analysis. The validity of the proposed method is verified through simulation and experiment studies.
引用
收藏
页码:1260 / 1281
页数:22
相关论文
共 50 条
  • [41] Safety in human-robot collaboration
    Hofbaur, M.
    Rathmair, M.
    [J]. ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2019, 136 (07): : 301 - 306
  • [42] Human modeling for human-robot collaboration
    Hiatt, Laura M.
    Narber, Cody
    Bekele, Esube
    Khemlani, Sangeet S.
    Trafton, J. Gregory
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (5-7): : 580 - 596
  • [43] Hierarchical Human Motion Intention Prediction for Increasing Efficacy of Human-Robot Collaboration
    Meng, Lingyi
    Yang, Lin
    Zheng, Enhao
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7637 - 7644
  • [44] Discovering Action Primitive Granularity from Human Motion for Human-Robot Collaboration
    Grigore, Elena Corina
    Scassellati, Brian
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XIII, 2017,
  • [45] Human-robot Compliant Collaboration Based on Feedback of Motion Intention of Human Arm
    Huang Y.
    Chen K.
    Wang K.
    Yang L.
    Zhang X.
    [J]. Jiqiren/Robot, 2021, 43 (02): : 148 - 155
  • [46] Hybrid Human Motion Prediction for Action Selection Within Human-Robot Collaboration
    Oguz, Ozgur S.
    Gabler, Volker
    Huber, Gerold
    Zhou, Zhehua
    Wollherr, Dirk
    [J]. 2016 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2017, 1 : 289 - 298
  • [47] Compliant Human-Robot Collaboration with Accurate Path-Tracking Ability for a Robot Manipulator
    Reyes-Uquillas, Daniel
    Hsiao, Tesheng
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [48] Interactive simulation of human-robot collaboration using a force feedback device
    Dombrowski, Uwe
    Stefanak, Tobias
    Perret, Jerome
    [J]. 27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 124 - 131
  • [49] Human-robot collaboration for safe object transportation using force feedback
    Ernesto Solanes, J.
    Gracia, Luis
    Munoz-Benavent, Pau
    Miro, Jaime Valls
    Carmichael, Marc G.
    Tornero, Josep
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 107 : 196 - 208
  • [50] Predicting the Future Motion of Divers for Enhanced Underwater Human-Robot Collaboration
    Agarwal, Tanmay
    Fulton, Michael
    Sattar, Junaed
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 5379 - 5386