Quantum phase transition of dynamical resistance in a mesoscopic capacitor

被引:2
|
作者
Hamamoto, Yuji [1 ]
Jonckheere, Thibaut [2 ]
Kato, Takeo [3 ]
Martin, Thierry [2 ,4 ]
机构
[1] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 3058571, Japan
[2] Ctr Phys Theor, F-13288 Marseille 9, France
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[4] Univ Mediterannee, F-13288 Marseille 9, France
关键词
COULOMB-BLOCKADE; HALL STATES; EXCITATIONS; SCATTERING; CHARGE;
D O I
10.1088/1742-6596/334/1/012033
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study theoretically dynamic response of a mesoscopic capacitor, which consists of a quantum dot connected to an electron reservoir via a point contact and capacitively coupled to a gate voltage. A quantum Hall edge state with a filling factor nu is realized in a strong magnetic field applied perpendicular to the two-dimensional electron gas. We discuss a noise-driven quantum phase transition of the transport property of the edge state by taking into account an ohmic bath connected to the gate voltage. Without the noise, the charge relaxation resitance for nu > 1/2 is universally quantized at R-q = h/(2e(2)nu), while for nu < 1/2, the system undergoes the Kosterlitz-Thouless transition, which drastically changes the nature of the dynamical resistance. The phase transition is facilitated by the noisy gate voltage, and we see that it can occur even for an integer quantum Hall edge at nu = 1. When the dissipation by the noise is sufficiently small, the quantized value of R-q is shifted by the bath impedance.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Signatures of a noise-induced quantum phase transition in a mesoscopic metal ring
    Tong, Ning-Hua
    Vojta, Matthias
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (01)
  • [32] Mesoscopic capacitance oscillations due to quantum dynamic coherence in an interacting quantum capacitor
    He, Jianhong
    Yue, Xiaokai
    Guo, Huazhong
    [J]. APPLIED PHYSICS LETTERS, 2020, 117 (11)
  • [33] The geometry of mesoscopic phase transition interfaces
    Novaga, Matteo
    Valdinoci, Enrico
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 19 (04) : 777 - 798
  • [34] Quantum dynamical phase transition in a system with many-body interactions
    Danieli, E. P.
    Alvarez, G. A.
    Levstein, P. R.
    Pastawski, H. M.
    [J]. SOLID STATE COMMUNICATIONS, 2007, 141 (07) : 422 - 426
  • [35] Quantum Fluctuations in Vacuum Energy: Cosmic Inflation as a Dynamical Phase Transition
    Morikawa, Masahiro
    [J]. UNIVERSE, 2022, 8 (06)
  • [36] Wehrl entropy production rate across a dynamical quantum phase transition
    Goes, B. O.
    Landi, G. T.
    Solano, E.
    Sanz, M.
    Celeri, L. C.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [37] Dissipation-induced dynamical phase transition in postselected quantum trajectories
    Hayata, Tomoya
    Hidaka, Yoshimasa
    Yamamoto, Arata
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2023, 2023 (02):
  • [38] Dynamical equilibration across a quenched phase transition in a trapped quantum gas
    I.-K. Liu
    S. Donadello
    G. Lamporesi
    G. Ferrari
    S.-C. Gou
    F. Dalfovo
    N. P. Proukakis
    [J]. Communications Physics, 1
  • [39] Variational approach in quantum field theories: To dynamical chiral phase transition
    Tsue, Yasuhiko
    [J]. Multiparticle Dynamics, 2006, 828 : 633 - 638
  • [40] Dynamical equilibration across a quenched phase transition in a trapped quantum gas
    Liu, I. -K. l
    Donadello, S.
    Lamporesi, G.
    Ferrari, G.
    Gou, S. -C.
    Dalfovo, F.
    Proukakis, N. P.
    [J]. COMMUNICATIONS PHYSICS, 2018, 1