Seizure Prediction using Convolutional Neural Networks and Sequence Transformer Networks

被引:14
|
作者
Chen, Ryan [1 ]
Parhi, Keshab K. [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/EMBC46164.2021.9629732
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate seizure prediction is important for design of wearable and implantable devices that can improve the lives of subjects with epilepsy. Such implantable devices can be used for closed-loop neuromodulation. However, there are many challenges that inhibit the performance of prediction models. One challenge in accurately predicting seizures is the nonstationarity of the EEG signals. This paper presents a patient-specific deep learning approach to improve predictive performance by transforming EEG data before extracting features for seizure prediction. In the proposed approach, a Sequence Transformer Network (STN) is first used to learn temporal and magnitude invariances in EEG data. The proposed method further computes the short-time Fourier transform (STFT) of the transformed EEG signals as input features to a convolutional neural network (CNN). A k-out-of-n post-processing method is used to reduce the significance of isolated false positives. The approach is tested using intracranial EEG from the American Epilepsy Society Seizure Prediction Challenge dataset. Leaveone-out cross validation is used to evaluate the model. The proposed model achieves an overall sensitivity of 82%, false prediction rate of 0.38/hour, and average AUC of 0.746.
引用
收藏
页码:6483 / 6486
页数:4
相关论文
共 50 条
  • [41] Prediction of Froth Flotation Performance Using Convolutional Neural Networks
    Jahedsaravani, A.
    Massinaei, M.
    Zarie, M.
    MINING METALLURGY & EXPLORATION, 2023, 40 (03) : 923 - 937
  • [42] Prediction to Atrial Fibrillation Using Deep Convolutional Neural Networks
    Cho, Jungrae
    Kim, Yoonnyun
    Lee, Minho
    PREDICTIVE INTELLIGENCE IN MEDICINE, 2018, 11121 : 164 - 171
  • [43] Prediction of aerodynamic flow fields using convolutional neural networks
    Saakaar Bhatnagar
    Yaser Afshar
    Shaowu Pan
    Karthik Duraisamy
    Shailendra Kaushik
    Computational Mechanics, 2019, 64 : 525 - 545
  • [44] Prediction of Froth Flotation Performance Using Convolutional Neural Networks
    A. Jahedsaravani
    M. Massinaei
    M. Zarie
    Mining, Metallurgy & Exploration, 2023, 40 : 923 - 937
  • [45] Severity prediction of software vulnerabilities using convolutional neural networks
    Saklani, Santosh
    Kalia, Anshul
    INFORMATION AND COMPUTER SECURITY, 2025,
  • [46] Early Prediction of Sepsis Using Convolutional and Recurrent Neural Networks
    Devi, S. K. Chaya
    Reddy, Y. Varun
    Vasthav, K. Sai Sri
    Praneeth, G.
    ADVANCES IN SIGNAL PROCESSING AND COMMUNICATION ENGINEERING, ICASPACE 2021, 2022, 929 : 55 - 61
  • [47] Prediction of turbulent heat transfer using convolutional neural networks
    Kim, Junhyuk
    Lee, Changhoon
    JOURNAL OF FLUID MECHANICS, 2020, 882
  • [48] Prediction of aerodynamic flow fields using convolutional neural networks
    Bhatnagar, Saakaar
    Afshar, Yaser
    Pan, Shaowu
    Duraisamy, Karthik
    Kaushik, Shailendra
    COMPUTATIONAL MECHANICS, 2019, 64 (02) : 525 - 545
  • [49] Move Prediction Using Deep Convolutional Neural Networks in Hex
    Gao, Chao
    Hayward, Ryan
    Mueller, Martin
    IEEE TRANSACTIONS ON GAMES, 2018, 10 (04) : 336 - 343
  • [50] Prediction of Heart Disease Using Deep Convolutional Neural Networks
    Awais Mehmood
    Munwar Iqbal
    Zahid Mehmood
    Aun Irtaza
    Marriam Nawaz
    Tahira Nazir
    Momina Masood
    Arabian Journal for Science and Engineering, 2021, 46 : 3409 - 3422