Multi-Label Wireless Interference Classification with Convolutional Neural Networks

被引:0
|
作者
Grunau, Sergej [1 ]
Block, Dimitri [1 ]
Meier, Uwe [1 ]
机构
[1] OWL Univ Appl Sci, Inst Ind IT, inIT, Lemgo, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The steadily growing use of license-free frequency bands require reliable coexistence management and therefore proper wireless interference classification (WIC). In this work, we propose a WIC approach based upon a deep convolutional neural network (CNN) which classifies multiple IEEE 802.15.1, IEEE 802.11 b/g and IEEE 802.15.4 interfering signals in the presence of a utilized signal. The generated multi-label dataset contains frequency-and time-limited sensing snapshots with the bandwidth of 10MHz and duration of 12.8 mu s, respectively. Each snapshot combines one utilized signal with up to multiple interfering signals. The approach shows promising results for same-technology interference with a classification accuracy of approximately 100% for narrow-band IEEE 802.15.1 and IEEE 802.15.4 signals. For cross-technology interference, wide-band IEEE 802.11 b/g signals achieve an accuracy above 90 %.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [21] Multi-label Building Functions Classification from Ground Pictures using Convolutional Neural Networks
    Srivastava, Shivangi
    Vargas-Munoz, John E.
    Swinkels, David
    Tuia, Devis
    PROCEEDINGS OF THE 2ND ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON AI FOR GEOGRAPHIC KNOWLEDGE DISCOVERY (GEOAI 2018), 2018, : 43 - 46
  • [22] Multi-Label Cardiac Abnormality Classification from Electrocardiogram Using Deep Convolutional Neural Networks
    Wickramasinghe, Nima L.
    Athif, Mohamed
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [23] Multi-label convolutional neural network based pedestrian attribute classification
    Zhu, Jianqing
    Liao, Shengcai
    Lei, Zhen
    Li, Stan Z.
    IMAGE AND VISION COMPUTING, 2017, 58 : 224 - 229
  • [24] Neural Networks for Multi-lingual Multi-label Document Classification
    Martinek, Jiri
    Lenc, Ladislav
    Kral, Pavel
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I, 2018, 11139 : 73 - 83
  • [25] Bring Globality Into Convolutional Neural Networks for Wireless Interference Classification
    Wang, Pengyu
    Cheng, Yufan
    Dong, Binhong
    Peng, Qihang
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (03) : 538 - 542
  • [26] Multi-Label Classification Neural Networks with Hard Logical Constraints
    Giunchiglia, Eleonora
    Lukasiewicz, Thomas
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2021, 72 : 759 - 818
  • [27] Robust fused hypergraph neural networks for multi-label classification
    Wang, Kaixiang
    Yang, Ming
    Yang, Wanqi
    Wang, Lei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (02) : 3203 - 3218
  • [28] Hierarchical multi-label classification using local neural networks
    Cerri, Ricardo
    Barros, Rodrigo C.
    de Carvalho, Andre C. P. L. F.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (01) : 39 - 56
  • [29] ART-Based Neural Networks for Multi-label Classification
    Sapozhnikova, Elena P.
    ADVANCES IN INTELLIGENT DATA ANALYSIS VIII, PROCEEDINGS, 2009, 5772 : 167 - 177
  • [30] Deep Neural Networks for Czech Multi-label Document Classification
    Lenc, Ladislav
    Kral, Pavel
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT II, 2018, 9624 : 460 - 471