The exhaustive genomic scan approach, with an application to rare-variant association analysis

被引:2
|
作者
Kanoungi, George [1 ,2 ]
Nothnagel, Michael [1 ,2 ]
Becker, Tim [3 ,4 ]
Drichel, Dmitriy [1 ,2 ,5 ]
机构
[1] Univ Cologne, Fac Med, Weyertal 115b, D-50931 Cologne, Germany
[2] Univ Cologne, Univ Hosp Cologne, CCG, Weyertal 115b, D-50931 Cologne, Germany
[3] Ernst Moritz Arndt Univ Greifswald, Inst Community Med, Greifswald, Germany
[4] xValue GmbH, Willich, Germany
[5] Drichel Analyt, Alexanderstr 6, D-53111 Bonn, Germany
关键词
MACULAR DEGENERATION; SEQUENCE; COMMON; REGIONS; HTRA1;
D O I
10.1038/s41431-020-0639-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Region-based genome-wide scans are usually performed by use of a priori chosen analysis regions. Such an approach will likely miss the region comprising the strongest signal and, thus, may result in increased type II error rates and decreased power. Here, we propose a genomic exhaustive scan approach that analyzes all possible subsequences and does not rely on a prior definition of the analysis regions. As a prime instance, we present a computationally ultraefficient implementation using the rare-variant collapsing test for phenotypic association, the genomic exhaustive collapsing scan (GECS). Our implementation allows for the identification of regions comprising the strongest signals in large, genome-wide rare-variant association studies while controlling the family-wise error rate via permutation. Application of GECS to two genomic data sets revealed several novel significantly associated regions for age-related macular degeneration and for schizophrenia. Our approach also offers a high potential to improve genome-wide scans for selection, methylation, and other analyses.
引用
收藏
页码:1283 / 1291
页数:9
相关论文
共 50 条
  • [21] cLD: Rare-variant linkage disequilibrium between genomic regions identifies novel genomic interactions
    Wang, Dinghao
    Perera, Deshan
    He, Jingni
    Cao, Chen
    Kossinna, Pathum
    Li, Qing
    Zhang, William
    Guo, Xingyi
    Platt, Alexander
    Wu, Jingjing
    Zhang, Qingrun
    [J]. PLOS GENETICS, 2023, 19 (12):
  • [22] Exome sequencing of Finnish isolates enhances rare-variant association power
    Locke, Adam E.
    Steinberg, Karyn Meltz
    Chiang, Charleston W. K.
    Service, Susan K.
    Havulinna, Aki S.
    Stell, Laurel
    Pirinen, Matti
    Abel, Haley J.
    Chiang, Colby C.
    Fulton, Robert S.
    Jackson, Anne U.
    Kang, Chul Joo
    Kanchi, Krishna L.
    Koboldt, Daniel C.
    Larson, David E.
    Nelson, Joanne
    Nicholas, Thomas J.
    Pietila, Arto
    Ramensky, Vasily
    Ray, Debashree
    Scott, Laura J.
    Stringham, Heather M.
    Vangipurapu, Jagadish
    Welch, Ryan
    Yajnik, Pranav
    Yin, Xianyong
    Eriksson, Johan G.
    Ala-Korpela, Mika
    Jarvelin, Marjo-Riitta
    Mannikko, Minna
    Laivuori, Hannele
    Dutcher, Susan K.
    Stitziel, Nathan O.
    Wilson, Richard K.
    Hall, Ira M.
    Sabatti, Chiara
    Palotie, Aarno
    Salomaa, Veikko
    Laakso, Markku
    Ripatti, Samuli
    Boehnke, Michael
    Freimer, Nelson B.
    [J]. NATURE, 2019, 572 (7769) : 323 - +
  • [23] Robust Rare-Variant Association Tests for Quantitative Traits in General Pedigrees
    Jiang Y.
    Conneely K.N.
    Epstein M.P.
    [J]. Statistics in Biosciences, 2018, 10 (3) : 491 - 505
  • [24] Rare-variant association tests in longitudinal studies, with an application to the Multi-Ethnic Study of Atherosclerosis (MESA)
    He, Zihuai
    Lee, Seunggeun
    Zhang, Min
    Smith, Jennifer A.
    Guo, Xiuqing
    Palmas, Walter
    Kardia, Sharon L. R.
    Ionita-Laza, Iuliana
    Mukherjee, Bhramar
    [J]. GENETIC EPIDEMIOLOGY, 2017, 41 (08) : 801 - 810
  • [25] Exome sequencing of Finnish isolates enhances rare-variant association power
    Adam E. Locke
    Karyn Meltz Steinberg
    Charleston W. K. Chiang
    Susan K. Service
    Aki S. Havulinna
    Laurel Stell
    Matti Pirinen
    Haley J. Abel
    Colby C. Chiang
    Robert S. Fulton
    Anne U. Jackson
    Chul Joo Kang
    Krishna L. Kanchi
    Daniel C. Koboldt
    David E. Larson
    Joanne Nelson
    Thomas J. Nicholas
    Arto Pietilä
    Vasily Ramensky
    Debashree Ray
    Laura J. Scott
    Heather M. Stringham
    Jagadish Vangipurapu
    Ryan Welch
    Pranav Yajnik
    Xianyong Yin
    Johan G. Eriksson
    Mika Ala-Korpela
    Marjo-Riitta Järvelin
    Minna Männikkö
    Hannele Laivuori
    Susan K. Dutcher
    Nathan O. Stitziel
    Richard K. Wilson
    Ira M. Hall
    Chiara Sabatti
    Aarno Palotie
    Veikko Salomaa
    Markku Laakso
    Samuli Ripatti
    Michael Boehnke
    Nelson B. Freimer
    [J]. Nature, 2019, 572 : 323 - 328
  • [26] A novel statistical method for rare-variant association studies in general pedigrees
    Huanhuan Zhu
    Zhenchuan Wang
    Xuexia Wang
    Qiuying Sha
    [J]. BMC Proceedings, 10 (Suppl 7)
  • [27] Convex combination sequence kernel association test for rare-variant studies
    Posner, Daniel C.
    Lin, Honghuang
    Meigs, James B.
    Kolaczyk, Eric D.
    Dupuis, Josee
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (04) : 352 - 367
  • [28] The effect of phenotypic outliers and non-normality on rare-variant association testing
    Auer, Paul M.
    Leal, Suzanne M.
    [J]. GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 531 - 531
  • [29] Rare-variant genome-wide association studies: a new frontier in genetic analysis of complex traits
    Wagner, Michael J.
    [J]. PHARMACOGENOMICS, 2013, 14 (04) : 413 - 424
  • [30] A powerful new method for rare-variant analysis of quantitative traits in families
    Bailey-Wilson, Joan E.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (12) : 1629 - 1630