Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques

被引:66
|
作者
Sahin, Hakan [1 ]
Subasi, Abdulhamit [1 ]
机构
[1] Int Burch Univ, Fac Engn & Informat Technol, Francuske Revolucije Bb, Sarajevo 71000, Bosnia & Herceg
关键词
Cardiotocogram; Support vector machines; Artificial neural network; Radial basis functions; Decision trees; k-Nearest neighbor and Random Forest; HEART-RATE; APPROXIMATION; VARIABILITY; NETWORKS; ROC;
D O I
10.1016/j.asoc.2015.04.038
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of the research is evaluating the classification performances of eight different machine-learning methods on the antepartum cardiotocography (CTG) data. The classification is necessary to predict newborn health, especially for the critical cases. Cardiotocography is used for assisting the obstetricians' to obtain detailed information during the pregnancy as a technique of measuring fetal well-being, essentially in pregnant women having potential complications. The obstetricians describe CTG shortly as a continuous electronic record of the baby's heart rate took from the mother's abdomen. The acquired information is necessary to visualize unhealthiness of the embryo and gives an opportunity for early intervention prior to happening a permanent impairment to the embryo. The aim of the machine learning methods is by using attributes of data obtained from the uterine contraction (UC) and fetal heart rate (FHR) signals to classify as pathological or normal. The dataset contains 1831 instances with 21 attributes, examined by applying the methods. In the paper, the highest accuracy displayed as 99.2%. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:231 / 238
页数:8
相关论文
共 50 条
  • [31] Classification of yoga pose using machine learning techniques
    Palanimeera, J.
    Ponmozhi, K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 2930 - 2933
  • [32] Classification of Time Signals Using Machine Learning Techniques
    Jadoon, Ishfaq Ahmad
    Logofatu, Doina
    Islam, Mohammad Nahin
    24TH INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2023, 2023, 1826 : 85 - 96
  • [33] Skin Disease Classification Using Machine Learning Techniques
    Abir, Mohammad Ashraful Haque
    Anik, Golam Kibria
    Riam, Shazid Hasan
    Karim, Mohammed Ariful
    Tareq, Azizul Hakim
    Rahman, Rashedur M.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 597 - 608
  • [34] Patient care classification using machine learning techniques
    Melhem, Shatha
    Al-Aiad, Ahmad
    Al-Ayyad, Muhammad Saleh
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 57 - 62
  • [35] Toddler ASD Classification Using Machine Learning Techniques
    Mohanty, Ashima Sindhu
    Patra, Krishna Chandra
    Parida, Priyadarsan
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2021, 17 (07) : 156 - 171
  • [36] Road vehicle classification using machine learning techniques
    Al-Tarawneh, Mu'ath
    Huang, Ying
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2019, 2019, 10970
  • [37] Classification of WatSan Technologies Using Machine Learning Techniques
    Al Nuaimi, Hala
    Abdelmagid, Mohamed
    Bouabid, Ali
    Chrysikopoulos, Constantinos V. V.
    Maalouf, Maher
    WATER, 2023, 15 (15)
  • [38] CLASSIFICATION OF DIABETES USING ENSEMBLE MACHINE LEARNING TECHNIQUES
    Ashisha G.R.
    Mary X.A.
    Raja J.M.
    Scalable Computing, 2024, 25 (04): : 3172 - 3180
  • [39] Patient Discharge Classification Using Machine Learning Techniques
    Gramaje A.
    Thabtah F.
    Abdelhamid N.
    Ray S.K.
    Annals of Data Science, 2021, 8 (04) : 755 - 767
  • [40] ECG beat classification using machine learning techniques
    Jambukia, Shweta H.
    Dabhi, Vipul K.
    Prajapati, Harshadkumar B.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2018, 26 (01) : 32 - 53