Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains

被引:44
|
作者
Serebrinsky, Santiago A. [1 ]
机构
[1] TenarisSiderca, Ctr Ind Res, Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 03期
关键词
ALLOYS;
D O I
10.1103/PhysRevE.83.037701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo
    Fearnhead, Paul
    Bierkens, Joris
    Pollock, Murray
    Roberts, Gareth O.
    [J]. STATISTICAL SCIENCE, 2018, 33 (03) : 386 - 412
  • [2] Perturbations of continuous-time Markov chains
    Li, Pei-Sen
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 125 : 17 - 24
  • [3] Filtering of Continuous-Time Markov Chains
    Aggoun, L.
    Benkherouf, L.
    Tadj, L.
    [J]. Mathematical and Computer Modelling (Oxford), 26 (12):
  • [4] Imprecise continuous-time Markov chains
    Krak, Thomas
    De Bock, Jasper
    Siebes, Arno
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 88 : 452 - 528
  • [5] Filtering of continuous-time Markov chains
    Aggoun, L
    Benkherouf, L
    Tadj, L
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (12) : 73 - 83
  • [6] Continuous-time controlled Markov chains
    Guo, XP
    Hernández-Lerma, O
    [J]. ANNALS OF APPLIED PROBABILITY, 2003, 13 (01): : 363 - 388
  • [7] Integrals for continuous-time Markov chains
    Pollett, PK
    [J]. MATHEMATICAL BIOSCIENCES, 2003, 182 (02) : 213 - 225
  • [8] Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
    Kohs, Lukas
    Alt, Bastian
    Koeppl, Heinz
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [9] On the Markov Property of the Occupation Time for Continuous-Time Inhomogeneous Markov Chains
    Vorotov A.A.
    [J]. Journal of Mathematical Sciences, 2015, 206 (2) : 127 - 145
  • [10] Continuous-time tracking algorithms involving two-time-scale Markov chains
    Yin, G
    Zhang, Q
    Moore, JB
    Liu, YJ
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (12) : 4442 - 4452