Perturbations of continuous-time Markov chains

被引:0
|
作者
Li, Pei-Sen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Continuous-time Markov chain; Integration by parts formula; Perturbation; Feller minimal transition function; Regularity;
D O I
10.1016/j.spl.2017.01.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The equivalence of regularity of a Q-matrix with its bounded perturbations is proved and an integration by parts formula is established for the associated Feller minimal transition functions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 50 条
  • [1] Imprecise continuous-time Markov chains
    Krak, Thomas
    De Bock, Jasper
    Siebes, Arno
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 88 : 452 - 528
  • [2] Filtering of continuous-time Markov chains
    Aggoun, L
    Benkherouf, L
    Tadj, L
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (12) : 73 - 83
  • [3] Continuous-time controlled Markov chains
    Guo, XP
    Hernández-Lerma, O
    [J]. ANNALS OF APPLIED PROBABILITY, 2003, 13 (01): : 363 - 388
  • [4] Integrals for continuous-time Markov chains
    Pollett, PK
    [J]. MATHEMATICAL BIOSCIENCES, 2003, 182 (02) : 213 - 225
  • [5] Perturbation analysis for continuous-time Markov chains
    LIU YuanYuan
    [J]. Science China Mathematics, 2015, 58 (12) : 2633 - 2642
  • [6] Ergodic degrees for continuous-time Markov chains
    MAO YonghuaDepartment of Mathematics
    [J]. Science China Mathematics, 2004, (02) : 161 - 174
  • [7] Ergodic degrees for continuous-time Markov chains
    Mao, YH
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (02): : 161 - 174
  • [8] Interval Continuous-Time Markov Chains Simulation
    Galdino, Sergio
    [J]. 2013 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY 2013), 2013, : 273 - 278
  • [9] On Nonergodicity of Some Continuous-Time Markov Chains
    D. B. Andreev
    E. A. Krylov
    A. I. Zeifman
    [J]. Journal of Mathematical Sciences, 2004, 122 (4) : 3332 - 3335
  • [10] Lumpability for Uncertain Continuous-Time Markov Chains
    Cardelli, Luca
    Grosu, Radu
    Larsen, Kim G.
    Tribastone, Mirco
    Tschaikowski, Max
    Vandin, Andrea
    [J]. QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2021), 2021, 12846 : 391 - 409