Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution

被引:57
|
作者
Li, Kui [1 ]
Jiang, Wenkai [2 ]
Hui, Yuanyuan [1 ]
Kong, Mengjuan [1 ]
Feng, Li-Ying [3 ]
Gao, Li-Zhi [3 ]
Li, Pengfu [1 ]
Lu, Shan [1 ,4 ]
机构
[1] Nanjing Univ, Sch Life Sci, State Key Lab Pharmaceut Biotechnol, Nanjing 210023, Peoples R China
[2] Novogene Bioinformat Inst, Bldg 301,Zone A10 Jiuxianqiao North Rd, Beijing 100083, Peoples R China
[3] South China Agr Univ, Inst Genom & Bioinformat, Guangzhou 510642, Peoples R China
[4] Nanjing Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
evolution; gapless; genome; rice; segmental duplications; transposable elements; MULTIPLE SEQUENCE ALIGNMENT; ADAPTIVE EVOLUTION; BLAST RESISTANCE; WEB SERVER; GENES; ANNOTATION; PREDICTION; REPEAT; IDENTIFICATION; GENERATION;
D O I
10.1016/j.molp.2021.06.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ultimate goal of genome assembly is a high-accuracy gapless genome. Here, we report a new assembly pipeline that is used to produce a gapless genome for the indica rice cultivar Minghui 63. The resulting 397.71-Mb final assembly is composed of 12 contigs with a contig N50 size of 31.93 Mb. Each chromosome is represented by a single contig and the genomic sequences of all chromosomes are gapless. Quality evaluation of this gapless genome assembly showed that gene regions in our assembly have the highest completeness compared with the other 15 reported high-quality rice genomes. Further comparison with the japonica rice genome revealed that the gapless indica genome assembly contains more transposable elements (TEs) and segmental duplications (SDs), the latter of which produce many duplicated genes that can affect agronomic traits through dose effect or sub-/neo-functionalization. The insertion of TEs can also affect the expression of duplicated genes, which may drive the evolution of these genes. Furthermore, we found the expansion of nucleotide-binding site with leucine-rich repeat disease-resistance genes and ciszeatin-O-glucosyltransferase growth-related genes in SDs in the gapless indica genome assembly, suggesting that SDs contribute to the adaptive evolution of rice disease resistance and developmental processes. Collectively, our findings suggest that active TEs and SDs synergistically contribute to rice genome evolution.
引用
收藏
页码:1745 / 1756
页数:12
相关论文
共 50 条
  • [21] The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae
    Thon, MR
    Pan, HQ
    Diener, S
    Papalas, J
    Taro, A
    Mitchell, TK
    Dean, RA
    GENOME BIOLOGY, 2006, 7 (02)
  • [22] The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte
    Xi-Hui Xu
    Zhen-Zhu Su
    Chen Wang
    Christian P. Kubicek
    Xiao-Xiao Feng
    Li-Juan Mao
    Jia-Ying Wang
    Chen Chen
    Fu-Cheng Lin
    Chu-Long Zhang
    Scientific Reports, 4
  • [23] The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte
    Xu, Xi-Hui
    Su, Zhen-Zhu
    Wang, Chen
    Kubicek, Christian P.
    Feng, Xiao-Xiao
    Mao, Li-Juan
    Wang, Jia-Ying
    Chen, Chen
    Lin, Fu-Cheng
    Zhang, Chu-Long
    SCIENTIFIC REPORTS, 2014, 4
  • [24] Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis (RDA)
    Panaud, O
    Vitte, C
    Hivert, J
    Muziak, S
    Talag, J
    Brar, D
    Sarr, A
    MOLECULAR GENETICS AND GENOMICS, 2002, 268 (01) : 113 - 121
  • [25] Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis (RDA)
    O. Panaud
    C. Vitte
    J. Hivert
    S. Muzlak
    J. Talag
    D. Brar
    A. Sarr
    Molecular Genetics and Genomics, 2002, 268 : 113 - 121
  • [26] A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance
    Chen, Xuequn
    Tong, Chaobo
    Zhang, Xingtan
    Song, Aixia
    Hu, Ming
    Dong, Wei
    Chen, Fei
    Wang, Youping
    Tu, Jinxing
    Liu, Shengyi
    Tang, Haibao
    Zhang, Liangsheng
    PLANT BIOTECHNOLOGY JOURNAL, 2021, 19 (03) : 615 - 630
  • [27] Inter- and intra-specific distribution of Stowaway transposable elements in AA-genome species of wild rice
    A. Kanazawa
    M. Akimoto
    H. Morishima
    Y. Shimamoto
    Theoretical and Applied Genetics, 2000, 101 : 327 - 335
  • [28] Inter- and intra-specific distribution of Stowaway transposable elements in AA-genome species of wild rice
    Kanazawa, A
    Akimoto, M
    Morishima, H
    Shimamoto, Y
    THEORETICAL AND APPLIED GENETICS, 2000, 101 (03) : 327 - 335
  • [29] The active miniature inverted-repeat transposable element mPing posttranscriptionally produces new transcriptional variants in the rice genome
    Rise Kum
    Takuji Tsukiyama
    Haruka Inagaki
    Hiroki Saito
    Masayoshi Teraishi
    Yutaka Okumoto
    Takatoshi Tanisaka
    Molecular Breeding, 2015, 35
  • [30] All families of transposable elements were active in the recent wheat genome evolution and polyploidy had no impact on their activity
    Papon, Nathan
    Lasserre-Zuber, Pauline
    Rimbert, Helene
    De Oliveira, Romain
    Paux, Etienne
    Choulet, Frederic
    PLANT GENOME, 2023, 16 (03):