Electrochemical CO2 reduction to CO on dendritic Ag-Cu electrocatalysts prepared by electrodeposition

被引:148
|
作者
Choi, Jihui [1 ]
Kim, Myung Jun [2 ]
Ahn, Sang Hyun [3 ]
Choi, Insoo [4 ]
Jang, Jong Hyun [5 ]
Ham, Yu Seok [2 ]
Kim, Jae Jeong [2 ]
Kim, Soo-Kil [1 ]
机构
[1] Chung Ang Univ, Sch Integrat Engn, 84 Heukseok Ro, Seoul 156756, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, Sch Chem & Biol Engn, 599 Gwanangno, Seoul 151744, South Korea
[3] Chung Ang Univ, Sch Chem Engn & Mat Sci, 84 Heukseok Ro, Seoul 156756, South Korea
[4] Kangwon Natl Univ, Div Energy Engn, 346 Jungang Ro, Samcheok 25913, Gangwon Do, South Korea
[5] Korea Inst Sci & Technol, Fuel Cell Res Ctr, Hwarangno 14 Gil 5, Seoul 136791, South Korea
关键词
Electrochemical carbon dioxide reduction; Carbon monoxide production; Electrodeposition; Silver-copper dendrite catalyst; SINGLE-CRYSTAL ELECTRODES; CARBON-DIOXIDE; METAL-ELECTRODES; ALLOY FORMATION; COPPER; ELECTROREDUCTION; CATALYSTS; SURFACE; SELECTIVITY; CONVERSION;
D O I
10.1016/j.cej.2016.04.037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ag, Ag-Cu and Cu dendrite catalysts were electrochemically prepared on a Cu foil substrate to investigate their catalytic activity and selectivity for electrochemical CO2 reduction to CO. As the Cu content increased, the morphologies of Ag-Cu dendrite catalysts changed significantly from round to flower-like shapes accompanied by a decrease in branch size of the dendritic structure. A crystallographic study of the Ag-Cu dendrite catalysts demonstrated the formation of Ag and Cu co-deposits, while a compositional characterization confirmed the presence of a Cu-rich surface. Among the synthesized dendrite catalysts, the Agno dendrite catalyst achieved the highest CO faradaic efficiency of 64.6% at a constant potential of -1.7 V-scE in CO2-saturated 0.5 M KHCO3 electrolyte. However, the catalytic activity of Ag57Cu43 dendrite catalyst was 2.2 times higher than that of the Agwo dendrite catalyst, in terms of Ag mass activity. By controlling the composition of Ag and Cu, direct formation of syn-gas or enhancement in the mass activity to CO production was achievable. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 50 条
  • [41] Bimetallic Electrocatalysts for CO2 Reduction
    Zhu, Wenlei
    Tackett, Brian M.
    Chen, Jingguang G.
    Jiao, Feng
    TOPICS IN CURRENT CHEMISTRY, 2018, 376 (06)
  • [42] Polypyridyl electrocatalysts for the reduction of CO2
    Lieske, Lauren
    Machan, Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [43] Bimetallic Electrocatalysts for CO2 Reduction
    Wenlei Zhu
    Brian M. Tackett
    Jingguang G. Chen
    Feng Jiao
    Topics in Current Chemistry, 2018, 376
  • [44] Borocarbonitrides As Metal-Free Electrocatalysts for the Electrochemical Reduction of CO2
    Ayyub, Mohd Monis
    Rao, C. N. R.
    CHEMISTRY OF MATERIALS, 2022, 34 (14) : 6626 - 6635
  • [45] Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction
    Zhang, Baohua
    Jiang, Yinzhu
    Gao, Mingxia
    Ma, Tianyi
    Sun, Wenping
    Pan, Hongge
    NANO ENERGY, 2021, 80
  • [46] An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction
    Zhao, Jian
    Xue, Song
    Barber, James
    Zhou, Yiwei
    Meng, Jie
    Ke, Xuebin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (09) : 4700 - 4734
  • [47] Mass transfer effects in CO2 reduction on Cu nanowire electrocatalysts
    Raciti, David
    Mao, Mark
    Park, Jun Ha
    Wang, Chao
    CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (09) : 2364 - 2369
  • [48] Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO2 to C2+ products
    Zhu, Qiuying
    Hu, Yuying
    Chen, Hongyu
    Meng, Chen
    Shang, Yizhu
    Hao, Chengcheng
    Wei, Shuxian
    Wang, Zhaojie
    Lu, Xiaoqing
    Liu, Siyuan
    NANOSCALE, 2023, 15 (05) : 2106 - 2113
  • [49] Anion-regulation engineering toward Cu/In/MOF bimetallic electrocatalysts for selective electrochemical reduction of CO2 to CO/formate
    Xu, Bingqing
    Hasan, Israr Masood Ul
    Peng, Luwei
    Liu, Junyu
    Xu, Nengneng
    Fan, Mengyang
    Niazi, Nabeel Khan
    Qiao, Jinli
    MATERIALS REPORTS: ENERGY, 2022, 2 (03):
  • [50] High-activity Cu nanowires electrocatalysts for CO2 reduction
    Huang, Peng
    Ci, Suqin
    Wang, Genxiang
    Jia, Jingchun
    Xu, Jiangwei
    Wen, Zhenhai
    JOURNAL OF CO2 UTILIZATION, 2017, 20 : 27 - 33