Capture Deformation Twinning in Mg during Shock Compression with Ultrafast Synchrotron X-Ray Diffraction

被引:35
|
作者
Chen, S. [1 ]
Li, Y. X. [1 ]
Zhang, N. B. [1 ]
Huang, J. W. [1 ]
Hou, H. M. [2 ,3 ]
Ye, S. J. [1 ]
Zhong, T. [1 ]
Zeng, X. L. [1 ]
Fan, D. [1 ]
Lu, L. [2 ,3 ]
Wang, L. [4 ]
Sun, T. [5 ]
Fezzaa, K. [5 ]
Zhang, Y. Y. [1 ]
Tang, M. X. [1 ]
Luo, S. N. [1 ,2 ,3 ]
机构
[1] Peac Inst Multiscale Sci, Chengdu 610031, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Minist Educ, Key Lab Adv Technol Mat, Chengdu 610031, Sichuan, Peoples R China
[3] Southwest Jiaotong Univ, Inst Mat Dynam, Chengdu 610031, Sichuan, Peoples R China
[4] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
[5] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA
基金
国家重点研发计划;
关键词
MAGNESIUM ALLOY; BEHAVIOR; PLASTICITY; DUCTILITY; AZ31;
D O I
10.1103/PhysRevLett.123.255501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Deformation twinning plays a vital role in accommodating plastic deformation of hexagonal-closepacked (hcp) metals, but its mechanisms are still unsettled under high strain rate shock compression. Here we investigate deformation twinning in shock-compressed Mg as a typical hcp metal with in situ, ultrafast synchrotron x-ray diffraction. Extension twinning occurs upon shock compression along < 11<(2 > over bar>0) and < 10 (1) over bar0 >, but only upon release for loading along < 0001 >. Such deformation mechanisms are a result of the polarity of deformation twinning, which depends on directionality and relative magnitude of resolved shear stress and may be common for Mg and its alloys in a wide range of strain rates.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] New insights into structural development in natural rubber during uniaxial deformation by in situ synchrotron X-ray diffraction
    Toki, S
    Sics, I
    Ran, SF
    Liu, LZ
    Hsiao, BS
    Murakami, S
    Senoo, K
    Kohjiya, S
    [J]. MACROMOLECULES, 2002, 35 (17) : 6578 - 6584
  • [32] X-ray synchrotron studies of ultrafast crystalline dynamics
    DeCamp, MF
    Reis, DA
    Fritz, DM
    Bucksbaum, PH
    Dufresne, EM
    Clarke, R
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2005, 12 : 177 - 192
  • [33] X-RAY DIFFRACTION EVIDENCE FOR CRYSTALLINE ORDER AND ISOTROPIC COMPRESSION DURING SHOCK-WAVE PROCESS
    JOHNSON, Q
    MITCHELL, A
    EVANS, L
    [J]. NATURE, 1971, 231 (5301) : 310 - &
  • [34] X-ray spectra of shock compression
    不详
    [J]. X-RAY SPECTROMETRY, 2009, 38 (01) : 74 - 74
  • [35] X-ray synchrotron in the forward shock of Cassiopeia A
    Berendse, F
    Holt, SS
    Petre, R
    Hwang, U
    [J]. YOUNG SUPERNOVA REMNANTS, 2001, 565 : 399 - 402
  • [36] X-Ray diffraction studies of mineral phase transitions under shock compression
    Tracy, Sally June
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E64 - E64
  • [37] X-ray diffraction on spider silk during controlled extrusion under a synchrotron radiation X-ray beam
    Riekel, C
    Madsen, B
    Knight, D
    Vollrath, F
    [J]. BIOMACROMOLECULES, 2000, 1 (04) : 622 - 626
  • [38] Shock Response of Nano-Diamonds Explored by Dynamic X-Ray Diffraction Shock Compression
    Jenkins, Timothy A.
    Sutherland, Gerrit T.
    Lorenzo, Nicholas
    Johnson, Eric C.
    [J]. SHOCK COMPRESSION OF CONDENSED MATTER - 2019, 2020, 2272
  • [39] Synchrotron X-Ray Diffraction Study of Texture Evolution in 904L Stainless Steel under Dynamic Shock Compression
    N. Li
    Y. D. Wang
    R. Lin Peng
    X. Sun
    Y. Ren
    L. Wang
    H. N. Cai
    [J]. Metallurgical and Materials Transactions A, 2011, 42 : 81 - 88
  • [40] In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics
    C. E. Wehrenberg
    D. McGonegle
    C. Bolme
    A. Higginbotham
    A. Lazicki
    H. J. Lee
    B. Nagler
    H.-S. Park
    B. A. Remington
    R. E. Rudd
    M. Sliwa
    M. Suggit
    D. Swift
    F. Tavella
    L. Zepeda-Ruiz
    J. S. Wark
    [J]. Nature, 2017, 550 : 496 - 499