Computing American option prices in the lognormal jump-diffusion framework with a Markov chain

被引:17
|
作者
Simonato, Jean-Guy [1 ]
机构
[1] HEC Montreal, Serv Enseignement Finance, Montreal, PQ H3T 2A7, Canada
来源
FINANCE RESEARCH LETTERS | 2011年 / 8卷 / 04期
关键词
American option; Jump-diffusion; Markov chain; VALUATION;
D O I
10.1016/j.frl.2011.01.002
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This note examines a numerical approach for computing American option prices in the lognormal jump-diffusion context. The approach uses the known transition density of the process to build a discrete-time, homogenous Markov chain to approximate the target jump-diffusion process. Numerical results showing the performance of the proposed method are examined. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 226
页数:7
相关论文
共 50 条
  • [1] An approximation of American option prices in a jump-diffusion model
    Mulinacci, S
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 62 (01) : 1 - 17
  • [2] Approximations of option prices for a jump-diffusion model
    Wee, IS
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (02) : 383 - 398
  • [3] THE EVALUATION OF AMERICAN OPTION PRICES UNDER STOCHASTIC VOLATILITY AND JUMP-DIFFUSION DYNAMICS USING THE METHOD OF LINES
    Chiarella, Carl
    Kang, Boda
    Meyer, Gunter H.
    Ziogas, Andrew
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (03) : 393 - 425
  • [4] Regularity of the American Option Value Function in Jump-Diffusion Model
    Hussain, Sultan
    Rehman, Nasir
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (02) : 286 - 297
  • [5] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [6] Representation of exchange option prices under stochastic volatility jump-diffusion dynamics
    Cheang, Gerald H. L.
    Garces, Len Patrick Dominic M.
    [J]. QUANTITATIVE FINANCE, 2020, 20 (02) : 291 - 310
  • [7] A FAST AND ROBUST NUMERICAL METHOD FOR OPTION PRICES AND GREEKS IN A JUMP-DIFFUSION MODEL
    Jeong, Darae
    Kim, Young Rock
    Lee, Seunggyu
    Choi, Yongho
    Lee, Woong-Ki
    Shin, Lae-Man
    An, Hyo-Rim
    Hwang, Hyeongseok
    Kim, Junseok
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2015, 22 (02): : 159 - 168
  • [8] α-quantile option in a jump-diffusion economy
    Ballotta, L
    [J]. FINANCIAL ENGINEERING, E-COMMERCE AND SUPPLY CHAIN, 2002, 70 : 75 - 87
  • [9] American option prices in a Markov chain market model
    van der Hoek, John
    Elliott, Robert J.
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2012, 28 (01) : 35 - 59
  • [10] A jump-diffusion model for option pricing
    Kou, SG
    [J]. MANAGEMENT SCIENCE, 2002, 48 (08) : 1086 - 1101