A FAST AND ROBUST NUMERICAL METHOD FOR OPTION PRICES AND GREEKS IN A JUMP-DIFFUSION MODEL

被引:1
|
作者
Jeong, Darae [1 ]
Kim, Young Rock [2 ]
Lee, Seunggyu [1 ]
Choi, Yongho [1 ]
Lee, Woong-Ki [3 ]
Shin, Lae-Man [4 ]
An, Hyo-Rim [4 ]
Hwang, Hyeongseok [4 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 136713, South Korea
[2] Hankuk Univ Foreign Studies, Major Math Educ, Seoul 130791, South Korea
[3] Korea Univ, Business Sch, Seoul 136071, South Korea
[4] Korea Univ, Dept Financial Engn, Seoul 136071, South Korea
关键词
jump-diffusion; Simpson's rule; non-uniform grid; implicit finite difference method; derivative securities;
D O I
10.7468/jksmeb.2015.22.2.159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a fast and robust finite difference method for Merton`s jump diffusion model, which is a partial integro-differential equation. To speed up a computational time, we compute a matrix so that we can calculate the non-local integral term fast by a simple matrix-vector operation. Also, we use non-uniform grids to increase efficiency. We present numerical experiments such as evaluation of the option prices and Greeks to demonstrate a performance of the proposed numerical method. The computational results are in good agreements with the exact solutions of the jump-diffusion model.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [1] AN EFFICIENT AND ROBUST NUMERICAL METHOD FOR OPTION PRICES IN A TWO-ASSET JUMP-DIFFUSION MODEL
    Lee, Chaeyoung
    Wang, Jian
    Jang, Hanbyeol
    Han, Hyunsoo
    Lee, Seongjin
    Lee, Wonjin
    Yang, Kisung
    Kim, Junseok
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2020, 27 (04): : 231 - 249
  • [2] Approximations of option prices for a jump-diffusion model
    Wee, IS
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (02) : 383 - 398
  • [3] An approximation of American option prices in a jump-diffusion model
    Mulinacci, S
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 62 (01) : 1 - 17
  • [4] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [5] A jump-diffusion model for option pricing
    Kou, SG
    [J]. MANAGEMENT SCIENCE, 2002, 48 (08) : 1086 - 1101
  • [6] Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes
    Zhu, Helin
    Ye, Fan
    Zhou, Enlu
    [J]. QUANTITATIVE FINANCE, 2015, 15 (11) : 1885 - 1900
  • [7] COMPUTATION OF GREEKS FOR JUMP-DIFFUSION MODELS
    Eddahbi, M'Hamed
    Ben Cherif, Sidi Mohamed Lalaoui
    Nasroallah, Abdelaziz
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (06)
  • [8] Construction of positivity preserving numerical method for jump-diffusion option pricing models
    Tan, Jianguo
    Yang, Hua
    Men, Weiwei
    Guo, Yongfeng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 320 : 96 - 100
  • [9] Computation of Greeks using binomial trees in a jump-diffusion model
    Suda, Shintaro
    Muroi, Yoshifumi
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2015, 51 : 93 - 110
  • [10] Cliquet option pricing in a jump-diffusion Levy model
    Hess, Markus
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2018, 5 (03): : 317 - 336