Cliquet option pricing in a jump-diffusion Levy model

被引:1
|
作者
Hess, Markus
机构
来源
关键词
Cliquet option pricing; path-dependent exotic option; equity indexed annuity; structured product; sensitivity analysis; Greeks; jump-diffusion model; Levy process; stochastic differential equation; compound Poisson process; Fourier transform; distribution function;
D O I
10.15559/18-VMSTA107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
investigate the pricing of cliquet options in a jump-diffusion model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a drifted Levy process entailing a Brownian diffusion component as well as compound Poisson jumps. We also derive representations for the density and distribution function of the emerging Levy process. In this setting, we infer semi-analytic expressions for the cliquet option price by two different approaches. The first one involves the probability distribution function of the driving Levy process whereas the second draws upon Fourier transform techniques. With view on sensitivity analysis and hedging purposes, we eventually deduce representations for several Greeks while putting emphasis on the Vega.
引用
收藏
页码:317 / 336
页数:20
相关论文
共 50 条
  • [1] A jump-diffusion model for option pricing
    Kou, SG
    [J]. MANAGEMENT SCIENCE, 2002, 48 (08) : 1086 - 1101
  • [2] Pricing Cliquet options in jump-diffusion models
    Yan, HF
    Yang, JQ
    Liu, LM
    [J]. STOCHASTIC MODELS, 2005, 21 (04) : 875 - 884
  • [3] A forward started jump-diffusion model and pricing of cliquet style exotics
    Gabriel G. Drimus
    [J]. Review of Derivatives Research, 2010, 13 : 125 - 140
  • [4] A forward started jump-diffusion model and pricing of cliquet style exotics
    Drimus, Gabriel G.
    [J]. REVIEW OF DERIVATIVES RESEARCH, 2010, 13 (02) : 125 - 140
  • [5] OPTION PRICING IN A JUMP-DIFFUSION MODEL WITH REGIME SWITCHING
    Yuen, Fei Lung
    Yang, Hailiang
    [J]. ASTIN BULLETIN, 2009, 39 (02): : 515 - 539
  • [6] Pricing Defaultable Bonds Using a Levy Jump-Diffusion Model
    Chiang, Shu L.
    Tsai, Ming S.
    [J]. INTERNATIONAL REVIEW OF FINANCE, 2019, 19 (03) : 613 - 640
  • [7] Option Pricing Model with Transaction Cost in the Jump-Diffusion Environment
    Zhang Yuansi
    [J]. CONTEMPORARY INNOVATION AND DEVELOPMENT IN MANAGEMENT SCIENCE, 2012, : 29 - 34
  • [8] Finite volume methods for pricing jump-diffusion option model
    Gan X.
    Yin J.
    Li R.
    [J]. Tongji Daxue Xuebao/Journal of Tongji University, 2016, 44 (09): : 1458 - 1465
  • [9] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [10] A jump-diffusion model for option pricing under fuzzy environments
    Xu, Weidong
    Wu, Chongfeng
    Xu, Weijun
    Li, Hongyi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 337 - 344