Computations with Frobenius powers

被引:1
|
作者
Hermiller, S [1 ]
Swanson, I
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68558 USA
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
关键词
Frobenius powers; Grobner bases; tight closure; binomial ideals;
D O I
10.1080/10586458.2005.10128913
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is an open question whether tight closure commutes with localization in quotients of a polynomial ring in finitely many variables over a field. Katzman [Katzman 98] showed that tight closure of ideals in these rings commutes with localization at one element, if for all ideals I and J in a polynomial ring there is a linear upper bound in q on the degree in the least variable of reduced Grobner bases in reverse lexicographic ordering of the ideals of the form J + 1([q]). Katzman conjectured that this property would always be satisfied. In this paper we prove several cases of Katzman's conjecture. We also provide an experimental analysis (with proofs) of asymptotic properties of Grobner bases connected with Katzman's conjectures.
引用
收藏
页码:161 / 173
页数:13
相关论文
共 50 条
  • [1] Frobenius powers
    Hernandez, Daniel J.
    Teixeira, Pedro
    Witt, Emily E.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 541 - 572
  • [2] Frobenius powers
    Daniel J. Hernández
    Pedro Teixeira
    Emily E. Witt
    [J]. Mathematische Zeitschrift, 2020, 296 : 541 - 572
  • [3] The complexity of Frobenius powers of ideals
    Katzman, M
    [J]. JOURNAL OF ALGEBRA, 1998, 203 (01) : 211 - 225
  • [4] The saturation of Frobenius powers of ideals
    Huneke, C
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (12) : 5563 - 5572
  • [5] Frobenius powers of complete intersections
    Avramov, LL
    Miller, C
    [J]. MATHEMATICAL RESEARCH LETTERS, 2001, 8 (1-2) : 225 - 232
  • [6] Socle degrees of Frobenius powers
    Kustin, Andrew R.
    Vraciu, Adela N.
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (01) : 185 - 208
  • [7] Frobenius powers of some monomial ideals
    Hernandez, Daniel J.
    Teixeira, Pedro
    Witt, Emily E.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) : 66 - 85
  • [8] Socle degrees, resolutions, and Frobenius powers
    Kustin, Andrew R.
    Ulrich, Bernd
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (01) : 25 - 41
  • [9] ASYMPTOTIC BEHAVIOR OF THE SOCLE OF FROBENIUS POWERS
    Li, Jinjia
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (02) : 603 - 627
  • [10] Invariants of polynomials mod Frobenius powers
    Drescher, C.
    Shepler, A., V
    [J]. JOURNAL OF ALGEBRA, 2020, 556 : 908 - 935