Frobenius powers

被引:3
|
作者
Hernandez, Daniel J. [1 ]
Teixeira, Pedro [2 ]
Witt, Emily E. [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Knox Coll, Dept Math, Galesburg, IL 61401 USA
基金
美国国家科学基金会;
关键词
F-THRESHOLDS;
D O I
10.1007/s00209-019-02442-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article extends the notion of a Frobenius power of an ideal in prime characteristic to allow arbitrary nonnegative real exponents. These generalized Frobenius powers are closely related to test ideals in prime characteristic, and multiplier ideals over fields of characteristic zero. For instance, like these well-known families of ideals, Frobenius powers also give rise to jumping exponents that we call critical Frobenius exponents. In fact, the Frobenius powers of a principal ideal coincide with its test ideals, but Frobenius powers appear to be a more refined measure of singularities than test ideals in general. Herein, we develop the theory of Frobenius powers in regular domains, and apply it to study singularities, especially those of generic hypersurfaces. These applications illustrate one way in which multiplier ideals behave more like Frobenius powers than like test ideals.
引用
收藏
页码:541 / 572
页数:32
相关论文
共 50 条
  • [1] Frobenius powers
    Daniel J. Hernández
    Pedro Teixeira
    Emily E. Witt
    [J]. Mathematische Zeitschrift, 2020, 296 : 541 - 572
  • [2] Computations with Frobenius powers
    Hermiller, S
    Swanson, I
    [J]. EXPERIMENTAL MATHEMATICS, 2005, 14 (02) : 161 - 173
  • [3] The complexity of Frobenius powers of ideals
    Katzman, M
    [J]. JOURNAL OF ALGEBRA, 1998, 203 (01) : 211 - 225
  • [4] The saturation of Frobenius powers of ideals
    Huneke, C
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (12) : 5563 - 5572
  • [5] Frobenius powers of complete intersections
    Avramov, LL
    Miller, C
    [J]. MATHEMATICAL RESEARCH LETTERS, 2001, 8 (1-2) : 225 - 232
  • [6] Socle degrees of Frobenius powers
    Kustin, Andrew R.
    Vraciu, Adela N.
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (01) : 185 - 208
  • [7] Frobenius powers of some monomial ideals
    Hernandez, Daniel J.
    Teixeira, Pedro
    Witt, Emily E.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) : 66 - 85
  • [8] Socle degrees, resolutions, and Frobenius powers
    Kustin, Andrew R.
    Ulrich, Bernd
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (01) : 25 - 41
  • [9] ASYMPTOTIC BEHAVIOR OF THE SOCLE OF FROBENIUS POWERS
    Li, Jinjia
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (02) : 603 - 627
  • [10] Invariants of polynomials mod Frobenius powers
    Drescher, C.
    Shepler, A., V
    [J]. JOURNAL OF ALGEBRA, 2020, 556 : 908 - 935