A General Zero Attraction Proportionate Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification

被引:30
|
作者
Li, Yingsong [1 ,2 ]
Wang, Yanyan [1 ]
Albu, Felix [3 ]
Jiang, Jingshan [2 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
[3] Valahia Univ Targoviste, Dept Elect, Targoviste 130082, Romania
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 10期
基金
中央高校基本科研业务费专项资金资助;
关键词
adaptive filter; normalized maximum correntropy criterion; normalized least mean square (NLMS); proportionate NLMS (PNLMS); zero attracting; impulsive noise; CHANNEL ESTIMATION; CONVERGENCE; EFFICIENT; LMS;
D O I
10.3390/sym9100229
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A general zero attraction (GZA) proportionate normalized maximum correntropy criterion (GZA-PNMCC) algorithm is devised and presented on the basis of the proportionate-type adaptive filter techniques and zero attracting theory to highly improve the sparse system estimation behavior of the classical MCC algorithm within the framework of the sparse system identifications. The newly-developed GZA-PNMCC algorithm is carried out by introducing a parameter adjusting function into the cost function of the typical proportionate normalized maximum correntropy criterion (PNMCC) to create a zero attraction term. The developed optimization framework unifies the derivation of the zero attraction-based PNMCC algorithms. The developed GZA-PNMCC algorithm further exploits the impulsive response sparsity in comparison with the proportionate-type-based NMCC algorithm due to the GZA zero attraction. The superior performance of the GZA-PNMCC algorithm for estimating a sparse system in a non-Gaussian noise environment is proven by simulations.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] An Improved Maximum Correntropy Criterion Algorithm with Flexible Zero Attractor for Sparse Channel Estimation in Mixed Gaussian Noise Environment
    Li, Yingsong
    Wang, Yanyan
    Yang, Rui
    [J]. PROCEEDINGS OF THE 2017 IEEE-APS TOPICAL CONFERENCE ON ANTENNAS AND PROPAGATION IN WIRELESS COMMUNICATIONS (APWC), 2017, : 316 - 319
  • [22] Filter proportionate normalized least mean square algorithm for a sparse system
    Rosalin
    Rout, Nirmal Kumar
    Das, Debi Prasad
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (11) : 1695 - 1705
  • [23] Proportionate normalized subband adaptive filter algorithms for sparse system identification
    Abadi, Mohammad Shams Esfand
    [J]. SIGNAL PROCESSING, 2009, 89 (07) : 1467 - 1474
  • [24] COMBINATION OF PROPORTIONATE NLMS ALGORITHM FOR SPARSE SYSTEM IDENTIFICATION
    张立
    [J]. 科技经济导刊, 2019, (03) : 155 - 156
  • [25] An Optimized Proportionate Adaptive Algorithm for Sparse System Identification
    Ciochina, Silviu
    Paleologu, Constantin
    Benesty, Jacob
    Grant, Steven L.
    [J]. 2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 1546 - 1550
  • [26] Variable Step-Size Affine Projection Maximum Correntropy Criterion Adaptive Filter With Correntropy Induced Metric for Sparse System Identification
    Zhao, Haiquan
    Liu, Bing
    Song, Pucha
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (11) : 2782 - 2786
  • [27] Proportionate recursive maximum correntropy criterion adaptive filtering algorithms and their performance analysis
    Qin, Zhen
    Tao, Jun
    Yang, Le
    Jiang, Ming
    [J]. DIGITAL SIGNAL PROCESSING, 2023, 139
  • [28] An Improved Proportionate Normalized Least Mean Square Algorithm for Sparse Impulse Response Identification
    文昊翔
    赖晓翰
    陈隆道
    蔡忠法
    [J]. Journal of Shanghai Jiaotong University(Science), 2013, 18 (06) : 742 - 748
  • [29] An improved proportionate normalized least mean square algorithm for sparse impulse response identification
    Wen H.-X.
    Lai X.-H.
    Chen L.-D.
    Cai Z.-F.
    [J]. Journal of Shanghai Jiaotong University (Science), 2013, 18 (6) : 742 - 748
  • [30] Robust Proportionate Normalized Least Mean M-Estimate Algorithm for Block-Sparse System Identification
    Lv, Shaohui
    Zhao, Haiquan
    Zhou, Lijun
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (01) : 234 - 238