Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy

被引:13
|
作者
Mashanov, Vladimir [1 ]
Ulyanov, Vladimir [1 ]
Timofeev, Vyacheslav [1 ]
Nikiforov, Aleksandr [1 ]
Pchelyakov, Oleg [1 ]
Yu, Ing-Song [2 ,3 ]
Cheng, Henry [2 ,3 ]
机构
[1] AV Rzhanov Inst Semicond Phys SB RAS, Novosibirsk 630090, Russia
[2] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 106, Taiwan
[3] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 106, Taiwan
来源
基金
俄罗斯基础研究基金会;
关键词
Atomic Force Microscopy; Molecular Beam Epitaxy; Scanning Tunnel Microscopy; High Energy Electron; Atomic Step;
D O I
10.1186/1556-276X-6-85
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The surface morphology of Ge0.96Sn0.04/Si(100) heterostructures grown at temperatures from 250 to 450 degrees C by atomic force microscopy (AFM) and scanning tunnel microscopy (STM) ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND) depending on their lateral size have been obtained. Maximum density of ND (6 x 10(11) cm(-2)) with the average lateral size of 7 nm can be obtained at 250 degrees C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450 degrees C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy
    Vladimir Mashanov
    Vladimir Ulyanov
    Vyacheslav Timofeev
    Aleksandr Nikiforov
    Oleg Pchelyakov
    Ing-Song Yu
    Henry Cheng
    [J]. Nanoscale Research Letters, 6
  • [2] Wurtzite InN nanodots on Si(100) by molecular beam epitaxy
    Bhat, Thirumaleshwara N.
    Rajpalke, Mohana K.
    Kumar, Mahesh
    Roul, Basanta
    Krupanidhi, S. B.
    [J]. 16TH INTERNATIONAL WORKSHOP ON PHYSICS OF SEMICONDUCTOR DEVICES, 2012, 8549
  • [3] Ge molecular beam epitaxy on Si(113): surface structures, nanowires and nanodots
    Zhang, ZH
    Sumitomo, K
    Omi, H
    Ogino, T
    Zhu, X
    [J]. SURFACE AND INTERFACE ANALYSIS, 2004, 36 (02) : 114 - 118
  • [4] MOLECULAR-BEAM EPITAXY GROWTH OF GE ON (100)SI
    BARIBEAU, JM
    HOUGHTON, DC
    JACKMAN, TE
    MCCAFFREY, JP
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (04) : 1158 - 1162
  • [5] Formation mechanism of high Ge content SiGe epilayer on Si by liquid phase epitaxy using Ge-Sn solution
    Ci, Ji-Wei
    Lian, Chen-Yin
    Uen, Wu-Yih
    Chen, Chien-Hsun
    Li, Chen-Yu
    [J]. THIN SOLID FILMS, 2020, 704
  • [6] Molecular Beam Epitaxy of Strained Nanoheterostructures Based on Si, Ge, and Sn
    Deryabin, A. S.
    Dolbak, A. E.
    Esin, M. Yu
    Mashanov, V., I
    Nikiforov, A., I
    Pchelyakov, O. P.
    Sokolov, L., V
    Timofeev, V. A.
    [J]. OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2020, 56 (05) : 470 - 477
  • [7] Molecular Beam Epitaxy of Strained Nanoheterostructures Based on Si, Ge, and Sn
    A. S. Deryabin
    A. E. Dolbak
    M. Yu. Esin
    V. I. Mashanov
    A. I. Nikiforov
    O. P. Pchelyakov
    L. V. Sokolov
    V. A. Timofeev
    [J]. Optoelectronics, Instrumentation and Data Processing, 2020, 56 : 470 - 477
  • [8] Molecular beam epitaxy of BeTe on vicinal Si(100) surfaces
    Zhou, XC
    Jiang, S
    Kirk, WP
    [J]. JOURNAL OF CRYSTAL GROWTH, 1997, 175 : 624 - 631
  • [9] Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy
    Sadofyev, Yu G.
    Martovitsky, V. P.
    Bazalevsky, M. A.
    Klekovkin, A. V.
    Averyanov, D. V.
    Vasil'evskii, I. S.
    [J]. SEMICONDUCTORS, 2015, 49 (01) : 124 - 129
  • [10] Ge/GeSn heterostructures grown on Si (100) by molecular-beam epitaxy
    Yu. G. Sadofyev
    V. P. Martovitsky
    M. A. Bazalevsky
    A. V. Klekovkin
    D. V. Averyanov
    I. S. Vasil’evskii
    [J]. Semiconductors, 2015, 49 : 124 - 129