Functional identities on upper triangular matrix rings

被引:0
|
作者
Yuan, He [1 ]
Chen, Liangyun [2 ]
机构
[1] Jilin Normal Univ, Dept Math, Siping 136000, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
functional identity; (t; d)-free subset; upper triangular matrix ring; LIE MAP CONJECTURES; D-FREE SUBSETS;
D O I
10.1515/math-2020-0018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a subset of a unital ring Q such that 0 is an element of R. Let us fix an element t is an element of Q. If R is a (t; d)-free subset of Q, then T-n(R) is a (t'; d)-free subset of T-n(Q), where t' is an element of T-n(Q), t'(ll) = t, l = 1, 2, ..., n, for any n is an element of N.
引用
收藏
页码:182 / 193
页数:12
相关论文
共 50 条
  • [31] Jordan homomorphisms of upper triangular matrix rings over a prime ring
    Du, Yiqiu
    Wang, Yu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 197 - 206
  • [32] Recollements associated to cotorsion pairs over upper triangular matrix rings
    Zhu, Rongmin
    Peng, Yeyang
    Ding, Nanqing
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (1-2): : 83 - 113
  • [33] MODEL-THEORY OF STRICTLY UPPER TRIANGULAR-MATRIX RINGS
    WHEELER, WH
    JOURNAL OF SYMBOLIC LOGIC, 1980, 45 (03) : 455 - 463
  • [34] Graded polynomial identities for the upper triangular matrix algebra over a finite field
    Goncalves, Dimas Jose
    Riva, Evandro
    JOURNAL OF ALGEBRA, 2020, 559 : 625 - 645
  • [35] Derivations of triangular matrix rings
    Vladeva, D., I
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (09): : 1450 - 1461
  • [36] Idempotents in triangular matrix rings
    Hou, Xin
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (02): : 296 - 304
  • [37] On Skew Triangular Matrix Rings
    Wang Wei-liang
    Wang Yao
    Ren Yan-li
    CommunicationsinMathematicalResearch, 2016, 32 (03) : 259 - 271
  • [38] ON SKEW TRIANGULAR MATRIX RINGS
    Nasr-Isfahani, A. R.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4461 - 4469
  • [39] On Skew Triangular Matrix Rings
    Habibi, M.
    Moussavi, A.
    Alhevaz, A.
    ALGEBRA COLLOQUIUM, 2015, 22 (02) : 271 - 280
  • [40] On ideals of triangular matrix rings
    Johan Meyer
    Jenő Szigeti
    Leon van Wyk
    Periodica Mathematica Hungarica, 2009, 59 : 109 - 115