A REMARK ON NORM INFLATION FOR NONLINEAR SCHRODINGER EQUATIONS

被引:34
|
作者
Kishimoto, Nobu [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
Nonlinear Schrodinger equations; ill-posedness; norm inflation; power series expansion; negative Sobolev spaces; ILL-POSEDNESS; WELL-POSEDNESS; GEOMETRIC OPTICS; CAUCHY-PROBLEM; REGULARITY; INSTABILITY; NLS; BOUSSINESQ; BOUNDS;
D O I
10.3934/cpaa.2019067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider semilinear Schrodinger equations with nonlinearity that is a polynomial in the unknown function and its complex conjugate, on R-d or on the torus. Norm inflation (ill-posedness) of the associated initial value problem is proved in Sobolev spaces of negative indices. To this end, we apply the argument of Iwabuchi and Ogawa (2012), who treated quadratic nonlinearities. This method can be applied whether the spatial domain is non-periodic or periodic and whether the nonlinearity is gauge/scale-invariant or not.
引用
收藏
页码:1375 / 1402
页数:28
相关论文
共 50 条
  • [41] On the solution of multicomponent nonlinear Schrodinger equations
    Kanna, T
    Tsoy, EN
    Akhmediev, N
    [J]. PHYSICS LETTERS A, 2004, 330 (3-4) : 224 - 229
  • [42] ON A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS
    RABINOWITZ, PH
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (02): : 270 - 291
  • [43] Stochastic nonlinear Schrodinger equations on tori
    Cheung, Kelvin
    Mosincat, Razvan
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2019, 7 (02): : 169 - 208
  • [44] Stabilization of solutions to nonlinear Schrodinger equations
    Cuccagna, S
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (09) : 1110 - 1145
  • [45] NONLINEAR, NONLOCAL SCHRODINGER-EQUATIONS
    HEIMSOETH, B
    LANGE, H
    [J]. PHYSICA B, 1991, 175 (1-3): : 44 - 48
  • [46] Normalized solutions of nonlinear Schrodinger equations
    Bartsch, Thomas
    de Valeriola, Sebastien
    [J]. ARCHIV DER MATHEMATIK, 2013, 100 (01) : 75 - 83
  • [47] NONLOCAL NONLINEAR SCHRODINGER-EQUATIONS
    HEIMSOETH, B
    LANGE, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (06): : T752 - T754
  • [48] Nonlinear Schrodinger equations for particles and antiparticles
    Doebner, HD
    Goldin, GA
    [J]. QUANTUM THEORY AND SYMMETRIES, 2004, : 119 - 125
  • [49] ON INTEGRABILITY OF NONAUTONOMOUS NONLINEAR SCHRODINGER EQUATIONS
    Suslov, Sergei K.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) : 3067 - 3082
  • [50] Choreographies in the discrete nonlinear Schrodinger equations
    Calleja, Renato
    Doedel, Eusebius
    Garcia-Azpeitia, Carlos
    Pando, Carlos L. L.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (5-6): : 615 - 624