A Bayesian analysis of the Conway-Maxwell-Poisson cure rate model

被引:10
|
作者
Cancho, Vicente G. [1 ]
de Castro, Mario [1 ]
Rodrigues, Josemar [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Estat, BR-13565905 Sao Carlos, SP, Brazil
关键词
Survival analysis; Cure rate models; Long-term survival models; Conway-Maxwell-Poisson (COM-Poisson) distribution; Bayesian analysis; Weibull distribution; COUNT DATA; SURVIVAL MODELS; OVERDISPERSION; MELANOMA;
D O I
10.1007/s00362-010-0326-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 50 条
  • [31] An asymptotic expansion for the normalizing constant of the Conway-Maxwell-Poisson distribution
    Gaunt, Robert E.
    Iyengar, Satish
    Daalhuis, Adri B. Olde
    Simsek, Burcin
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (01) : 163 - 180
  • [32] Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes
    Lord, Dominique
    Guikema, Seth D.
    Geedipally, Srinivas Reddy
    ACCIDENT ANALYSIS AND PREVENTION, 2008, 40 (03): : 1123 - 1134
  • [33] A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography
    Santarelli, Maria Filomena
    Della Latta, Daniele
    Scipioni, Michele
    Positano, Vincenzo
    Landini, Luigi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 77 : 90 - 101
  • [34] The zero-inflated Conway-Maxwell-Poisson distribution: Bayesian inference, regression modeling and influence diagnostic
    Barriga, Gladys D. C.
    Louzada, Francisco
    STATISTICAL METHODOLOGY, 2014, 21 : 23 - 34
  • [35] Conjugate Analysis of the Conway-Maxwell-Poisson Distribution (vol 1, pg 363, 2006)
    Kadane, Joseph B.
    Shmueli, Galit
    Minka, Thomas P.
    Borle, Sharad
    Boatwright, Peter
    BAYESIAN ANALYSIS, 2018, 13 (03): : 1005 - 1005
  • [36] Examination of Crash Variances Estimated by Poisson-Gamma and Conway-Maxwell-Poisson Models
    Geedipally, Srinivas Reddy
    Lord, Dominique
    TRANSPORTATION RESEARCH RECORD, 2011, (2241) : 59 - 67
  • [37] Finite mixtures of mean-parameterized Conway-Maxwell-Poisson models
    Zhan, Dongying
    Young, Derek S.
    STATISTICAL PAPERS, 2024, 65 (03) : 1469 - 1492
  • [38] Finite Mixtures of Mean-Parameterized Conway-Maxwell-Poisson Regressions
    Zhan, Dongying
    Young, Derek S.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2024, 18 (01)
  • [39] A modified Conway-Maxwell-Poisson type binomial distribution and its applications
    Imoto, T.
    Ng, C. M.
    Ong, S. H.
    Chakraborty, S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (24) : 12210 - 12225
  • [40] On the existence of maximum likelihood estimates for the parameters of the Conway-Maxwell-Poisson distribution
    Bedbur, Stefan
    Kamps, Udo
    Imm, Anton
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 561 - 575