Varifold solutions of a sharp interface limit of a diffuse interface model for tumor growth

被引:14
|
作者
Melchionna, Stefano [1 ]
Rocca, Elisabetta [2 ,3 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[3] CNR, IMATI, Via Ferrata 5, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
Free boundary problems; diffuse interface models; sharp interface limit; Cahn-Hilliard equation; Darcy law; tumor growth; CAHN-HILLIARD EQUATION; MIXTURE MODEL;
D O I
10.4171/IFB/393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the sharp interface limit of a diffuse interface model for a coupled Cahn-Hilliard-Darcy system that models tumor growth when a certain parameter epsilon > 0, related to the interface thickness, tends to zero. In particular, we prove that weak solutions to the related initial boundary value problem tend to varifold solutions of a corresponding sharp interface model when epsilon goes to zero.
引用
收藏
页码:571 / 590
页数:20
相关论文
共 50 条
  • [21] Sharp-interface model of electrodeposition and ramified growth
    Nielsen, Christoffer P.
    Bruus, Henrik
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [22] Sharp interface limit of a phase-field model of crystal grains
    Lobkovsky, AE
    Warren, JA
    PHYSICAL REVIEW E, 2001, 63 (05): : 516051 - 5160510
  • [23] A SHARP INTERFACE LIMIT OF A NONLOCAL VARIATIONAL MODEL FOR PATTERN FORMATION IN BIOMEMBRANES
    Ginster, Janusz
    Hayrapetyan, Gurgen
    Pesic, Anastasija
    Zwicknagl, Barbara
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 2818 - 2862
  • [24] A Comparative Study of the Diffuse-Interface Model and Sharp-Interface Model in the Soldering Related Wetting Spreading Systems
    Liu, Guanpeng
    Zhang, Jianyang
    Lei, Min
    Li, Yulong
    Li, Xuewen
    METALS, 2019, 9 (09)
  • [25] Convergence of a diffuse interface Poisson-Boltzmann (PB) model to the sharp interface PB model: A unified regularization formulation
    Shao, Yuanzhen
    McGowan, Mark
    Wang, Siwen
    Alexov, Emil
    Zhao, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 436
  • [26] Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth
    Ebenbeck, Matthias
    Knopf, Patrik
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26 (26)
  • [27] Long-Time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth
    Cavaterra, Cecilia
    Rocca, Elisabetta
    Wu, Hao
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (02): : 739 - 787
  • [28] Long-Time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth
    Cecilia Cavaterra
    Elisabetta Rocca
    Hao Wu
    Applied Mathematics & Optimization, 2021, 83 : 739 - 787
  • [29] On sharp interface limits for diffuse interface models for two-phase flows
    Abels, Helmut
    Lengeler, Daniel
    INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) : 395 - 418
  • [30] Sharp Interface Limit of a Stokes/Cahn–Hilliard System, Part II: Approximate Solutions
    Helmut Abels
    Andreas Marquardt
    Journal of Mathematical Fluid Mechanics, 2021, 23