In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part of the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton R-4, or S-3 x R, or S-2 x R-2. In addition, we provide some curvature estimates for four-dimensional complete gradient Ricci solitons assuming that its scalar curvature is suitable bounded by the potential function.
机构:
Fuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R China
Fuyang Normal Univ, Coll Informat Engn, Fuyang 236041, Peoples R ChinaFuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R China
Chu, Yawei
Zhou, Jundong
论文数: 0引用数: 0
h-index: 0
机构:
Fuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R ChinaFuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R China
Zhou, Jundong
Wang, Xue
论文数: 0引用数: 0
h-index: 0
机构:
Fuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R ChinaFuyang Normal Univ, Sch Math & Stat, Fuyang 236037, Anhui, Peoples R China
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
机构:
Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R ChinaYanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China