Four-dimensional complete gradient shrinking Ricci solitons

被引:3
|
作者
Cao, Huai-Dong [1 ]
Ribeiro, Ernani, Jr. [2 ]
Zhou, Detang [3 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] Univ Fed Ceara UFC, Dept Matemat, Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil
[3] Univ Fed Fluminense UFF, Inst Matemat & Estat, BR-24020140 Niteroi, RJ, Brazil
关键词
CLASSIFICATION; SINGULARITIES;
D O I
10.1515/crelle-2021-0026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part of the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton R-4, or S-3 x R, or S-2 x R-2. In addition, we provide some curvature estimates for four-dimensional complete gradient Ricci solitons assuming that its scalar curvature is suitable bounded by the potential function.
引用
收藏
页码:127 / 144
页数:18
相关论文
共 50 条