A block Chebyshev-Davidson method for linear response eigenvalue problems

被引:10
|
作者
Teng, Zhongming [1 ]
Zhou, Yunkai [2 ]
Li, Ren-Cang [3 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Comp & Informat Sci, Fuzhou 350002, Peoples R China
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
[3] Univ Texas Arlington, Dept Math, POB 19408, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Eigenvalue/eigenvector; Chebyshev polynomial; Davidson type method; Convergence rate; Linear response; Upper bound estimator; MINIMIZATION PRINCIPLES;
D O I
10.1007/s10444-016-9455-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Chebyshev-Davidson method to compute a few smallest positive eigenvalues and corresponding eigenvectors of linear response eigenvalue problems. The method is applicable to more general linear response eigenvalue problems where some purely imaginary eigenvalues may exist. For the Chebyshev filter, a tight upper bound is obtained by a computable bound estimator that is provably correct under a reasonable condition. When the condition fails, the estimated upper bound may not be a true one. To overcome that, we develop an adaptive strategy for updating the estimated upper bound to guarantee the effectiveness of our new Chebyshev-Davidson method. We also obtain an estimate of the rate of convergence for the Ritz values by our algorithm. Finally, we present numerical results to demonstrate the performance of the proposed Chebyshev-Davidson method.
引用
收藏
页码:1103 / 1128
页数:26
相关论文
共 50 条
  • [21] Parallel block davidson method for solving large scale eigenvalue problem
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    不详
    Nanjing Hangkong Hangtian Daxue Xuebao, 2007, 6 (814-818):
  • [22] A rational-Chebyshev projection method for nonlinear eigenvalue problems
    Tang, Ziyuan
    Saad, Yousef
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (06)
  • [23] A meshless Chebyshev collocation method for eigenvalue problems of the Helmholtz equation
    Cao, Leilei
    Gu, Yan
    Zhang, Chuanzeng
    Qin, Qing-Hua
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 125 : 80 - 109
  • [24] TRACE MINIMIZATION METHOD VIA PENALTY FOR LINEAR RESPONSE EIGENVALUE PROBLEMS
    Chen, Yadan
    Shen, Yuan
    Liu, Shanshan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (01) : 773 - 791
  • [25] A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems
    Betcke, T
    Voss, H
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2004, 20 (03): : 363 - 372
  • [26] Preconditioned inexact Jacobi–Davidson method for large symmetric eigenvalue problems
    Hong-Yi Miao
    Li Wang
    Computational and Applied Mathematics, 2020, 39
  • [27] Jacobi-Davidson method for the second order fractional eigenvalue problems
    He, Ying
    Zuo, Qian
    CHAOS SOLITONS & FRACTALS, 2021, 143 (143)
  • [28] A block Newton method for nonlinear eigenvalue problems
    Daniel Kressner
    Numerische Mathematik, 2009, 114 : 355 - 372
  • [29] A block Newton method for nonlinear eigenvalue problems
    Kressner, Daniel
    NUMERISCHE MATHEMATIK, 2009, 114 (02) : 355 - 372
  • [30] A Jacobi-Davidson method for solving complex symmetric eigenvalue problems
    Arbenz, P
    Hochstenbach, ME
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1655 - 1673