RETRACTED: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas (Retracted article. See vol. 25, pg. 1197, 2023)
被引:58
|
作者:
Yogananda, Chandan Ganesh Bangalore
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Yogananda, Chandan Ganesh Bangalore
[1
]
Shah, Bhavya R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Shah, Bhavya R.
[1
]
Vejdani-Jahromi, Maryam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Vejdani-Jahromi, Maryam
[1
]
Nalawade, Sahil S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Nalawade, Sahil S.
[1
]
Murugesan, Gowtham K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Murugesan, Gowtham K.
[1
]
Yu, Frank F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Yu, Frank F.
[1
]
Pinho, Marco C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Pinho, Marco C.
[1
]
Wagner, Benjamin C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Wagner, Benjamin C.
[1
]
Mickey, Bruce
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Neurol Surg, Dallas, TX 75390 USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Mickey, Bruce
[2
]
Patel, Toral R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Neurol Surg, Dallas, TX 75390 USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Patel, Toral R.
[2
]
Fei, Baowei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Dallas, Dept Bioengn, Richardson, TX 75083 USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Fei, Baowei
[3
]
Madhuranthakam, Ananth J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Madhuranthakam, Ananth J.
[1
]
Maldjian, Joseph A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USAUniv Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
Maldjian, Joseph A.
[1
]
机构:
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Radiol, Dallas, TX USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Neurol Surg, Dallas, TX 75390 USA
[3] Univ Texas Dallas, Dept Bioengn, Richardson, TX 75083 USA
Background. Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in gliomas. Currently, reliable IDH mutation determination requires invasive surgical procedures. The purpose of this study was to develop a highly accurate, MRI-based, voxelwise deep-learning IDH classification network using T2-weighted (T2w) MR images and compare its performance to a multicontrast network. Methods. Multiparametric brain MR1 data and corresponding genomic information were obtained for 214 subjects (94 IDH-mutated, 120 IDH wild-type) fromThe Cancer Imaging Archive andThe Cancer Genome Atlas. Two separate networks were developed, including aT2w image-only network (T2-net) and a multicontrast (T2w, fluid attenuated inversion recovery, and T1 postcontrast) network (TS-net) to perform 1DH classification and simultaneous single label tumor segmentation. The networks were trained using 3D Dense-UNets.Three-fold cross-validation was performed to generalize the networks' performance. Receiver operating characteristic analysis was also performed. Dice scores were computed to determine tumor segmentation accuracy. Results. T2-net demonstrated a mean cross-validation accuracy of 97.14% t 0.04 in predicting 1DH mutation status, with a sensitivity of 0.97 +/- 0.03, specificity of 0.98 +/- 0.01, and an area under the curve (AUC) of 0.98 +/- 0.01. TS-net achieved a mean cross-validation accuracy of 97.12% +/- 0.09, with a sensitivity of 0.98 +/- 0.02, specificity of 0.97 +/- 0.001, and an AUC of 0.99 +/- 0.01. The mean whole tumor segmentation Dice scores were 0.85 +/- 0.009 for T2-net and 0.89 +/- 0.006 for TS-net. Conclusion. We demonstrate high IDH classification accuracy using only T2-weighted MR images. This represents an important milestone toward clinical translation.
机构:
Univ Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi ArabiaUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia
Alattar, Abdullah
Alvi, Arooj Mohsin
论文数: 0引用数: 0
h-index: 0
机构:
Riphah Int Univ, Riphah Inst Pharmaceut Sci, Islamabad, PakistanUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia
Alvi, Arooj Mohsin
论文数: 引用数:
h-index:
机构:
Rashid, Sajid
Hussain, Nadia
论文数: 0引用数: 0
h-index: 0
机构:
Al Ain Univ, Coll Pharm, Dept Pharmaceut Sci, Al Ain, U Arab Emirates
Al Ain Univ, AAU Hlth & Biomed Res Ctr, Abu Dhabi, U Arab EmiratesUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia
Hussain, Nadia
Gul, Mehreen
论文数: 0引用数: 0
h-index: 0
机构:
Quaid I Azam Univ, Natl Ctr Bioinformat, Islamabad, PakistanUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia
Gul, Mehreen
Ikram, Muhammad
论文数: 0引用数: 0
h-index: 0
机构:
Khyber Med Univ, Inst Pharmaceut Sci, Peshawar, PakistanUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia
Ikram, Muhammad
Khalil, Atif Ali Khan
论文数: 0引用数: 0
h-index: 0
机构:
Women Univ, Lahore Coll, Fac Pharmaceut & Allied Hlth Sci, Inst Pharm, Lahore, PakistanUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia
Khalil, Atif Ali Khan
Alshaman, Reem
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi ArabiaUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia
Alshaman, Reem
论文数: 引用数:
h-index:
机构:
Shah, Fawad Ali
Li, Shupeng
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Shenzhen Grad Sch, Sch Chem Biol & Biotechnol, State Key Lab Oncogenom, Shenzhen, Peoples R ChinaUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia
Li, Shupeng
Li, Jingbo
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Gen Hosp, Clin Med Acad, Hlth Management Ctr, Shenzhen, Peoples R ChinaUniv Tabuk, Fac Pharm, Dept Pharmacol & Toxicol, Tabuk, Saudi Arabia