COMPLETE DUALITY FOR MARTINGALE OPTIMAL TRANSPORT ON THE LINE

被引:60
|
作者
Beiglbock, Mathias [1 ]
Nutz, Marcel [2 ]
Touzi, Nizar [3 ]
机构
[1] TU Vienna, Dept Math, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Columbia Univ, Dept Stat & Math, 1255 Amsterdam Ave, New York, NY 10027 USA
[3] Ecole Polytech Paris, UMR CNRS 7641, Ctr Math Appl, F-91128 Palaiseau, France
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 05期
基金
奥地利科学基金会;
关键词
Martingale optimal transport; Kantorovich duality; DISCRETE-TIME; CONSTRAINTS; MARGINALS; COUPLINGS; ARBITRAGE; OPTIONS; THEOREM; VERSION; MODELS; BOUNDS;
D O I
10.1214/16-AOP1131
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the optimal transport between two probability measures on the real line, where the transport plans are laws of one-step martingales. A quasi sure formulation of the dual problem is introduced and shown to yield a complete duality theory for general marginals and measurable reward (cost) functions: absence of a duality gap and existence of dual optimizers. Both properties are shown to fail in the classical formulation. As a consequence of the duality result, we obtain a general principle of cyclical monotonicity describing the geometry of optimal transports.
引用
收藏
页码:3038 / 3074
页数:37
相关论文
共 50 条
  • [1] Martingale optimal transport duality
    Patrick Cheridito
    Matti Kiiski
    David J. Prömel
    H. Mete Soner
    [J]. Mathematische Annalen, 2021, 379 : 1685 - 1712
  • [2] Martingale optimal transport duality
    Cheridito, Patrick
    Kiiski, Matti
    Proemel, David J.
    Soner, H. Mete
    [J]. MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1685 - 1712
  • [3] Entropy martingale optimal transport and nonlinear pricing–hedging duality
    Alessandro Doldi
    Marco Frittelli
    [J]. Finance and Stochastics, 2023, 27 : 255 - 304
  • [4] Entropy martingale optimal transport and nonlinear pricing-hedging duality
    Doldi, Alessandro
    Frittelli, Marco
    [J]. FINANCE AND STOCHASTICS, 2023, 27 (02) : 255 - 304
  • [5] CONTINUITY OF THE MARTINGALE OPTIMAL TRANSPORT PROBLEM ON THE REAL LINE
    Wiesel, Johannes
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (6A): : 4645 - 4692
  • [6] Geometry of vectorial martingale optimal transportations and duality
    Tongseok Lim
    [J]. Mathematical Programming, 2024, 204 : 349 - 383
  • [7] Geometry of vectorial martingale optimal transportations and duality
    Lim, Tongseok
    [J]. MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 349 - 383
  • [8] A multi-marginal c-convex duality theorem for martingale optimal transport
    Sester, Julian
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 210
  • [9] Tightness and duality of martingale transport on the Skorokhod space
    Guo, Gaoyue
    Tan, Xiaolu
    Touzi, Nizar
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (03) : 927 - 956
  • [10] STABILITY OF MARTINGALE OPTIMAL TRANSPORT AND WEAK OPTIMAL TRANSPORT
    Backhoff-Veraguas, J.
    Pammer, G.
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 721 - 752