Martingale optimal transport duality

被引:17
|
作者
Cheridito, Patrick [1 ]
Kiiski, Matti [1 ]
Proemel, David J. [2 ]
Soner, H. Mete [3 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08540 USA
关键词
60B05; 60G44; 91B24; 91G20; FUNDAMENTAL THEOREM; ARBITRAGE;
D O I
10.1007/s00208-019-01952-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a dual representation of the Kantorovich functional defined for functions on the Skorokhod space using quotient sets. Our representation takes the form of a Choquet capacity generated by martingale measures satisfying additional constraints to ensure compatibility with the quotient sets. These sets contain stochastic integrals defined pathwise and two such definitions starting with simple integrands are given. Another important ingredient of our analysis is a regularized version of Jakubowski's S-topology on the Skorokhod space.
引用
收藏
页码:1685 / 1712
页数:28
相关论文
共 50 条
  • [1] Martingale optimal transport duality
    Patrick Cheridito
    Matti Kiiski
    David J. Prömel
    H. Mete Soner
    [J]. Mathematische Annalen, 2021, 379 : 1685 - 1712
  • [2] COMPLETE DUALITY FOR MARTINGALE OPTIMAL TRANSPORT ON THE LINE
    Beiglbock, Mathias
    Nutz, Marcel
    Touzi, Nizar
    [J]. ANNALS OF PROBABILITY, 2017, 45 (05): : 3038 - 3074
  • [3] Entropy martingale optimal transport and nonlinear pricing–hedging duality
    Alessandro Doldi
    Marco Frittelli
    [J]. Finance and Stochastics, 2023, 27 : 255 - 304
  • [4] Entropy martingale optimal transport and nonlinear pricing-hedging duality
    Doldi, Alessandro
    Frittelli, Marco
    [J]. FINANCE AND STOCHASTICS, 2023, 27 (02) : 255 - 304
  • [5] Geometry of vectorial martingale optimal transportations and duality
    Tongseok Lim
    [J]. Mathematical Programming, 2024, 204 : 349 - 383
  • [6] Geometry of vectorial martingale optimal transportations and duality
    Lim, Tongseok
    [J]. MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 349 - 383
  • [7] A multi-marginal c-convex duality theorem for martingale optimal transport
    Sester, Julian
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 210
  • [8] Tightness and duality of martingale transport on the Skorokhod space
    Guo, Gaoyue
    Tan, Xiaolu
    Touzi, Nizar
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (03) : 927 - 956
  • [9] STABILITY OF MARTINGALE OPTIMAL TRANSPORT AND WEAK OPTIMAL TRANSPORT
    Backhoff-Veraguas, J.
    Pammer, G.
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 721 - 752
  • [10] MARTINGALE OPTIMAL TRANSPORT WITH STOPPING
    Bayraktar, Erhan
    Cox, Alexander M. G.
    Stoev, Yavor
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (01) : 417 - 433