Promoting anaerobic co-digestion of sewage sludge and food waste with different types of conductive materials: Performance, stability, and underlying mechanism

被引:67
|
作者
Liang, Jialin [1 ]
Luo, Liwen [1 ]
Li, Dongyi [1 ]
Varjani, Sunita [2 ]
Xu, Yunjie [3 ]
Wong, Jonathan W. C. [1 ,3 ]
机构
[1] Hong Kong Baptist Univ, Sino Forest Appl Res Ctr Pearl River Delta Enviro, Inst Bioresource & Agr, Dept Biol, Hong Kong, Peoples R China
[2] Gujarat Pollut Control Board, Gandhinagar 382010, Gujarat, India
[3] Huzhou Univ, Sch Technol, Huzhou 311800, Peoples R China
基金
中国国家自然科学基金;
关键词
Anaerobic co-digestion; Conductive materials; DIET mechanism; Digestate dewaterability; ZERO-VALENT IRON; CHAIN FATTY-ACIDS; ACTIVATED-SLUDGE; METHANE PRODUCTION; ROLES;
D O I
10.1016/j.biortech.2021.125384
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In this research, we investigated and compared the effects of three widely used conductive materials, e.g., zerovalent iron (Fe0), magnetite (Fe3O4), and biochar on the performance, stability, and in-depth mechanism during the anaerobic co-digestion process of sewage sludge and food waste. Among the three conductive materials, Fe0 could achieve the highest cumulative methane production of 394.0 mL/g volatile solids (VS) added, which was 1.24-fold and 1.17-fold higher than that receiving Fe3O4 and biochar. The mechanistic studies indicated that compared to the Fe3O4 and biochar groups, Fe0 could significantly enhance the release of soluble protein, polysaccharide, and dissolved organic matters, the degradation of volatile fatty acids and VS, and the activities of key enzymes and direct interspecies electron transfer (DIET). Consequently, the methane yield and digestate dewaterability were notably improved. Collectively, these findings will offer suggestions of the preferable conductive materials in the anaerobic co-digestion process for decision makers.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [1] Anaerobic co-digestion of sewage sludge and food waste
    Prabhu, Meghanath S.
    Mutnuri, Srikanth
    WASTE MANAGEMENT & RESEARCH, 2016, 34 (04) : 307 - 315
  • [2] Investigation on the anaerobic co-digestion of food waste with sewage sludge
    Wang, Yubo
    Wang, Chunxiao
    Wang, Yulin
    Xia, Yu
    Chen, Guanghao
    Zhang, Tong
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (20) : 7755 - 7766
  • [3] Investigation on the anaerobic co-digestion of food waste with sewage sludge
    Yubo Wang
    Chunxiao Wang
    Yulin Wang
    Yu Xia
    Guanghao Chen
    Tong Zhang
    Applied Microbiology and Biotechnology, 2017, 101 : 7755 - 7766
  • [4] Performance of Anaerobic Membrane Bioreactors for the Co-digestion of Sewage Sludge and Food Waste
    Dai J.-J.
    Niu C.-X.
    Pan Y.
    Lu X.-Q.
    Zhen G.-Y.
    Zheng C.-T.
    Zhang R.-L.
    He X.-Y.
    Huanjing Kexue/Environmental Science, 2020, 41 (08): : 3740 - 3747
  • [5] A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge
    Paranjpe, Archana
    Saxena, Seema
    Jain, Pankaj
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 338
  • [6] The effect and mechanism of polyethylene terephthalate microplastics on anaerobic co-digestion of sewage sludge and food waste
    Wang, Pan
    Guo, Yuwen
    Yu, Miao
    Riya, Shohei
    Zheng, Yi
    Ren, Lianhai
    BIOCHEMICAL ENGINEERING JOURNAL, 2023, 198
  • [7] Anaerobic co-digestion of coffee waste and sewage sludge
    Neves, L
    Oliveira, R
    Alves, MM
    WASTE MANAGEMENT, 2006, 26 (02) : 176 - 181
  • [8] Two-phase anaerobic co-digestion of food waste and sewage sludge
    Wang, Feng
    Li, Wei-Ying
    Yi, Xue-Nong
    WATER SCIENCE AND TECHNOLOGY, 2015, 71 (01) : 100 - 106
  • [9] Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
    Kim, SH
    Han, SK
    Shin, HS
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (15) : 1607 - 1616
  • [10] High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance
    Dai, Xiaohu
    Duan, Nina
    Dong, Bin
    Dai, Lingling
    WASTE MANAGEMENT, 2013, 33 (02) : 308 - 316