Quantifying Monte Carlo Uncertainty in the Ensemble Kalman Filter

被引:0
|
作者
Thulin, Kristian [1 ,2 ]
Noevdal, Geir [1 ,2 ]
Skaug, Hans Julius [3 ]
Aanonsen, Sigurd Ivar
机构
[1] Univ Bergen, Int Res Inst Stavanger, N-5020 Bergen, Norway
[2] Univ Bergen, Ctr Integrated Petr Res, N-5020 Bergen, Norway
[3] Univ Bergen, Dept Math, N-5020 Bergen, Norway
来源
SPE JOURNAL | 2011年 / 16卷 / 01期
关键词
DATA ASSIMILATION;
D O I
暂无
中图分类号
TE [石油、天然气工业];
学科分类号
0820 ;
摘要
The ensemble Kalman filter (EnKF) is currently considered one of the most promising methods for conditioning reservoir-simulation models to production data. The EnKF is a sequential Monte Carlo method based on a low-rank approximation of the system covariance matrix. The posterior probability distribution of model variables may be estimated from the updated ensemble, but, because of the low-rank covariance approximation, the updated ensemble members become correlated samples from the posterior distribution. We suggest using multiple EnKF runs, each with a smaller ensemble size, to obtain truly independent samples from the posterior distribution. This allows a pointwise confidence interval to be constructed for the posterior cumulative distribution function (CDF). We investigate the methodology for finding an optimal combination of ensemble batch size n and number of EnKF runs m while keeping the total number of ensemble members nxm constant. The optimal combination of n and in is found through minimizing the integrated mean-square error (MSE) for the CDFs. We illustrate the approach on two models, first a small linear model and then a synthetic 2D model inspired by petroleum applications. In the latter case, we choose to define an EnKF run with 10,000 ensemble members as having zero Monte Carlo error. The proposed methodology should be applicable also to larger, more-realistic models.
引用
收藏
页码:172 / 182
页数:11
相关论文
共 50 条
  • [21] Understanding the Ensemble Kalman Filter
    Katzfuss, Matthias
    Stroud, Jonathan R.
    Wikle, Christopher K.
    [J]. AMERICAN STATISTICIAN, 2016, 70 (04): : 350 - 357
  • [22] Resampling the ensemble Kalman filter
    Myrseth, Inge
    Saetrom, Jon
    Omre, Henning
    [J]. COMPUTERS & GEOSCIENCES, 2013, 55 : 44 - 53
  • [23] A probabilistic parametrization for geological uncertainty estimation using the ensemble Kalman filter (EnKF)
    Sebacher, Bogdan
    Hanea, Remus
    Heemink, Arnold
    [J]. COMPUTATIONAL GEOSCIENCES, 2013, 17 (05) : 813 - 832
  • [24] A probabilistic parametrization for geological uncertainty estimation using the ensemble Kalman filter (EnKF)
    Bogdan Sebacher
    Remus Hanea
    Arnold Heemink
    [J]. Computational Geosciences, 2013, 17 : 813 - 832
  • [25] A mollified ensemble Kalman filter
    Bergemann, Kay
    Reich, Sebastian
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (651) : 1636 - 1643
  • [26] An Iterative Ensemble Kalman Filter
    Lorentzen, Rolf J.
    Naevdal, Geir
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) : 1990 - 1995
  • [27] Hierarchical Ensemble Kalman Filter
    Myrseth, Inge
    Omre, Henning
    [J]. SPE JOURNAL, 2010, 15 (02): : 569 - 580
  • [28] An adaptive ensemble Kalman filter
    Mitchell, HL
    Houtekamer, PL
    [J]. MONTHLY WEATHER REVIEW, 2000, 128 (02) : 416 - 433
  • [29] Cluster ensemble Kalman filter
    Smith, Keston W.
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (05) : 749 - 757
  • [30] Monte Carlo Kalman filter and smoothing for multivariate discrete state space models
    Song, PXK
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (03): : 641 - 652