An Improved Kernel-Driven BRDF Model Coupled with Topography: KDCT

被引:0
|
作者
Hao, Dalei [1 ,2 ]
Wen, Jianguang [1 ]
Xiao, Qing [1 ]
Wu, Shengbiao [1 ,2 ]
Cheng, Juan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
BRDF; RTLSR; reflectance; kernel-driven model; rugged terrain; topography; LAND-SURFACE ALBEDO;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rugged terrain complicates the BRDF modeling mainly by the modulation of sun-target-sensor geometry and shadowing effects. An improved kernel-driven BRDF model coupled with topography (KDCT) is put forward by combining the RTLSR model used in the algorithm for MODIS bidirectional reflectance anisotropies of land surface (AMBRALS) and the anisotropic reflectance model for rugged terrain (dESM). The improved model was compared with the original RTLSR model by using the simulated data based on the radiosity approach and the MODIS reflectance data. The validation results revealed that the improved KDCT model outperforms the RTLSR model without topographic consideration and can significantly improve the ability of the kernel-driven model to process the multi-angular reflectance measurements over rugged terrain.
引用
收藏
页码:3959 / 3962
页数:4
相关论文
共 50 条
  • [11] TO RECONSTRUCT HOTSPOT EFFECT FOR MODIS BRDF ARCHETYPES USING A HOTSPOT-CORRECTED KERNEL-DRIVEN BRDF MODEL
    Jiao, Ziti
    Dong, Yadong
    Zhang, Hu
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2654 - 2656
  • [12] Class-based kernels selection for albedo inversion by kernel-driven BRDF model
    Zhang, H
    Yang, H
    Jiao, ZT
    Li, XW
    Wang, JD
    Ding, X
    Liu, JB
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3872 - 3874
  • [13] BRDF MODELING COMPARISON IN HOTSPOT EFFECT WITH MODIFIED KERNEL-DRIVEN MODELS
    Huang, Xingying
    Jiao, Ziti
    Dong, Yadong
    Li, Xiaowen
    Zhang, Hu
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4248 - 4251
  • [14] Improving Kernel-Driven BRDF Model for Capturing Vegetation Canopy Reflectance With Large Leaf Inclinations
    Wu, Shengbiao
    Wen, Jianguang
    Liu, Qinhuo
    You, Dongqin
    Yin, Gaofei
    Lin, Xingwen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2639 - 2655
  • [15] A kernel-driven BRDF model to inform satellite-derived visible anvil cloud detection
    Scarino, Benjamin R.
    Bedka, Kristopher
    Bhatt, Rajendra
    Khlopenkov, Konstantin
    Doelling, David R.
    Smith, William L., Jr.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (10) : 5491 - 5511
  • [16] Validation of kernel-driven semiempirical BRDF models for application to MODIS/MISR data
    Hu, BX
    Wanner, W
    Li, XW
    Strahler, AH
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1669 - 1671
  • [17] A visualization tool for the kernel-driven model with improved ability in data analysis and kernel assessment
    Dong, Yadong
    Jiao, Ziti
    Zhang, Hu
    Bai, Dongni
    Zhang, Xiaoning
    Li, Yang
    He, Dandan
    COMPUTERS & GEOSCIENCES, 2016, 95 : 1 - 10
  • [18] An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model
    Jiao, Ziti
    Dong, Yadong
    Schaaf, Crystal B.
    Chen, Jing M.
    Roman, Miguel
    Wang, Zhuosen
    Zhang, Hu
    Ding, Anxin
    Erb, Angela
    Hill, Michael J.
    Zhang, Xiaoning
    Strahler, Alan
    REMOTE SENSING OF ENVIRONMENT, 2018, 209 : 594 - 611
  • [19] Evaluation of kernel-driven BRDF models for the normalization of Alpilles/ReSeDA POLDER data
    Weiss, M
    Jacob, F
    Baret, F
    Pragnère, A
    Bruchou, C
    Leroy, M
    Hautecoeur, O
    Prévot, L
    Bruguier, N
    AGRONOMIE, 2002, 22 (06): : 531 - 536
  • [20] Extending a Linear Kernel-Driven BRDF Model to Realistically Simulate Reflectance Anisotropy Over Rugged Terrain
    Yan, Kai
    Li, Hanliang
    Song, Wanjuan
    Tong, Yiyi
    Hao, Dalei
    Zeng, Yelu
    Mu, Xihan
    Yan, Guangjian
    Fang, Yuan
    Myneni, Ranga B.
    Schaaf, Crystal
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60