HO-1 Protects against Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction in H9c2 Cardiomyocytes

被引:30
|
作者
Chen, Dongling [1 ]
Jin, Zhe [1 ]
Zhang, Jingjing [1 ]
Jiang, Linlin [1 ]
Chen, Kai [1 ]
He, Xianghu [1 ]
Song, Yinwei [2 ]
Ke, Jianjuan [1 ]
Wang, Yanlin [1 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Dept Anesthesiol, Wuhan 430072, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Med Coll, Dept Ophthalmol, Tongji Hosp, Wuhan 430074, Peoples R China
来源
PLOS ONE | 2016年 / 11卷 / 05期
基金
中国国家自然科学基金;
关键词
ISCHEMIA-REPERFUSION INJURY; PERMEABILITY TRANSITION PORE; HEME OXYGENASE-1; INTESTINAL ISCHEMIA/REPERFUSION; OXIDATIVE STRESS; HEART-DISEASE; IN-VIVO; AUTOPHAGY; EXPRESSION; GENE;
D O I
10.1371/journal.pone.0153587
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Mitochondrial dysfunction would ultimately lead to myocardial cell apoptosis and death during ischemia-reperfusion injuries. Autophagy could ameliorate mitochondrial dysfunction by autophagosome forming, which is a catabolic process to preserve the mitochondrial's structural and functional integrity. HO-1 induction and expression are important protective mechanisms. This study in order to investigate the role of HO-1 during mitochondrial damage and its mechanism. Methods and Results The H9c2 cardiomyocyte cell line were incubated by hypoxic and then reoxygenated for the indicated time (2, 6, 12, 18, and 24 h). Cell viability was tested with CCK-8 kit. The expression of endogenous HO-1(RT-PCR and Western blot) increased with the duration of reoxygenation and reached maximum levels after 2 hours of H/R; thereafter, the expression gradually decreased to a stable level. Mitochondrial dysfunction (Flow cytometry quantified the ROS generation and JC-1 staining) and autophagy (The Confocal microscopy measured the autophagy. RFP-GFP-LC3 double-labeled adenovirus was used for testing.) were induced after 6 hours of H/R. Then, genetic engineering technology was employed to construct an Lv-HO1-H9c2 cell line. When HO-1 was overexpressed, the LC3II levels were significantly increased after reoxygenation, p62 protein expression was significantly decreased, the level of autophagy was unchanged, the mitochondrial membrane potential was significantly increased, and the mitochondrial ROS level was significantly decreased. Furthermore, when the HO-1 inhibitor ZnPP was applied the level of autophagy after reoxygenation was significantly inhibited, and no significant improvement in mitochondrial dysfunction was observed. Conclusions During myocardial hypoxia-reoxygenation injury, HO-1 overexpression induces autophagy to protect the stability of the mitochondrial membrane and reduce the amount of mitochondrial oxidation products, thereby exerting a protective effect.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Plantamajoside protects H9c2 cells against hypoxia/reoxygenation-induced injury through regulating the akt/Nrf2/HO-1 and NF-κB signaling pathways
    Zeng, Guangwei
    An, Huixian
    Fang, Dong
    Wang, Wei
    Han, Yang
    Lian, Cheng
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2022, 42 (02) : 125 - 132
  • [12] Pim-2 protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via downregulation of Bim expression
    Xu, Yan
    Xing, Yawei
    Xu, Yanjie
    Huang, Chahua
    Bao, Huihui
    Hong, Kui
    Cheng, Xiaoshu
    ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2016, 48 : 94 - 102
  • [13] The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes
    Gao, Yang
    Jia, Pengyu
    Shu, WenQi
    Jia, Dalin
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2016, 774 : 71 - 79
  • [14] Lycopene protects against apoptosis in hypoxia/reoxygenation-induced H9C2 myocardioblast cells through increased autophagy
    Chen, Fei
    Sun, Ze-Wei
    Ye, Li-Fang
    Fu, Guo-Sheng
    Mou, Yun
    Hu, Shen-Jiang
    MOLECULAR MEDICINE REPORTS, 2015, 11 (02) : 1358 - 1365
  • [15] HDMP from Astragalus membranaceus Protects H9c2 Cardiomyocytes Against Hypoxia/Reoxygenation-induced Injury via Mitochondria-mediated Pathway
    Mao, Yani
    Kou, Fengjun
    Bi, Yun
    LATIN AMERICAN JOURNAL OF PHARMACY, 2017, 36 (12): : 2403 - 2410
  • [16] Lycopene Protects against Hypoxia/Reoxygenation-Induced Apoptosis by Preventing Mitochondrial Dysfunction in Primary Neonatal Mouse Cardiomyocytes
    Yue, Rongchuan
    Hu, Houxiang
    Yiu, Kai Hang
    Luo, Tao
    Zhou, Zhou
    Xu, Lei
    Zhang, Shuang
    Li, Ke
    Yu, Zhengping
    PLOS ONE, 2012, 7 (11):
  • [17] Protective Effects of Lophanic Acid from Rabdosia lophanthoides on H9c2 Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Apoptosis
    Zhao, Xiaolian
    Zhao, Zixuan
    LATIN AMERICAN JOURNAL OF PHARMACY, 2020, 39 (01): : 116 - 122
  • [18] Salvianolic acid A protects H9C2 cardiomyocytes against hypoxia/reoxygenation injuryby regulating VDAC1
    WANG Dan-shu
    YAN Liu-yan
    WANG Rong-rong
    WANG Shou-bao
    FANG Lian-hua
    DU Guan-hua
    中国药理学与毒理学杂志, 2019, (10) : 800 - 801
  • [19] Protective effect of microRNA-30b on hypoxia/reoxygenation-induced apoptosis in H9C2 cardiomyocytes
    Li, Tong
    Sun, Ze-Lin
    Xie, Qi Ying
    GENE, 2015, 561 (02) : 268 - 275
  • [20] Bauhinia championii Flavone Attenuates Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes by Improving Mitochondrial Dysfunction
    Liao, Ping
    Sun, Guibo
    Zhang, Chan
    Wang, Min
    Sun, Yao
    Zhou, Yuehan
    Sun, Xiaobo
    Jian, Jie
    MOLECULES, 2016, 21 (11):