Adaptive Finite Element Approximations for a Class of Nonlinear Eigenvalue Problems in Quantum Physics

被引:10
|
作者
Chen, Huajie [1 ]
Gong, Xingao [2 ]
He, Lianhua [1 ]
Zhou, Aihui [1 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会;
关键词
Adaptive finite element; convergence; micro-structure; nonlinear eigenvalue; GROUND-STATE SOLUTION; DIMENSIONAL APPROXIMATIONS; CONVERGENCE;
D O I
10.4208/aamm.10-m1057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an adaptive finite element method for a class of nonlinear eigenvalue problems resulting from quantum physics that may have a nonconvex energy functional. We prove the convergence of adaptive finite element approximations and present several numerical examples of micro-structure of matter calculations that support our theory.
引用
收藏
页码:493 / 518
页数:26
相关论文
共 50 条
  • [1] Finite element approximations of nonlinear eigenvalue problems in quantum physics
    Chen, Huajie
    He, Lianhua
    Zhou, Aihui
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) : 1846 - 1865
  • [2] Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics
    Yang, Bin
    Zhou, Aihui
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (01) : 209 - 227
  • [3] A CASCADIC ADAPTIVE FINITE ELEMENT METHOD FOR NONLINEAR EIGENVALUE PROBLEMS IN QUANTUM PHYSICS
    Xu, Fei
    [J]. MULTISCALE MODELING & SIMULATION, 2020, 18 (01): : 198 - 220
  • [4] Two-scale finite element discretizations for nonlinear eigenvalue problems in quantum physics
    Hou, Pengyu
    Liu, Fang
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (04)
  • [5] Two-scale finite element discretizations for nonlinear eigenvalue problems in quantum physics
    Pengyu Hou
    Fang Liu
    [J]. Advances in Computational Mathematics, 2021, 47
  • [6] Finite element Galerkin approximations to a class of nonlinear and nonlocal parabolic problems
    Sharma, Nisha
    Khebchareon, Morrakot
    Sharma, Kapil
    Pani, Amiya K.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (04) : 1232 - 1264
  • [7] EXTERNAL FINITE-ELEMENT APPROXIMATIONS OF EIGENVALUE PROBLEMS
    VANMAELE, M
    ZENISEK, A
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (05): : 565 - 589
  • [8] An Adaptive Finite Element Method with Hybrid Basis for Singularly Perturbed Nonlinear Eigenvalue Problems
    Li, Ye
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (02) : 442 - 472
  • [9] CONVERGENCE OF ADAPTIVE FINITE ELEMENT METHODS FOR EIGENVALUE PROBLEMS
    Garau, Eduardo M.
    Morin, Pedro
    Zuppa, Carlos
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (05): : 721 - 747
  • [10] ON THE ACCURACY OF FINITE ELEMENT APPROXIMATIONS TO A CLASS OF INTERFACE PROBLEMS
    Guzman, Johnny
    Sanchez, Manuel A.
    Sarkis, Marcus
    [J]. MATHEMATICS OF COMPUTATION, 2016, 85 (301) : 2071 - 2098