Estimation of attributable fractions using inverse probability weighting

被引:14
|
作者
Sjolander, Arvid [1 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17177 Stockholm, Sweden
关键词
PRINCIPAL STRATIFICATION; SENSITIVITY-ANALYSIS; PHYSICAL-ACTIVITY; CAUSAL INFERENCE; OUTCOMES;
D O I
10.1177/0962280209349880
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
The attributable fraction is commonly used in epidemiology to quantify the impact of an exposure on a disease. Several estimation methods have been suggested in the literature, including maximum likelihood estimation. In this article we propose an additional estimation method, based on inverse probability weighting. This method is particularly useful when a model for the exposure distibution can be well specified. We carry out a simulation study to examine the performance of the inverse probability weighted estimator, and to compare it to the maximum likelihood estimator.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 50 条
  • [31] Variance reduction in randomised trials by inverse probability weighting using the propensity score
    Williamson, Elizabeth J.
    Forbes, Andrew
    White, Ian R.
    STATISTICS IN MEDICINE, 2014, 33 (05) : 721 - 737
  • [32] A Generalized Bootstrap Procedure of the Standard Error and Confidence Interval Estimation for Inverse Probability of Treatment Weighting
    Li, Tenglong
    Lawson, Jordan
    MULTIVARIATE BEHAVIORAL RESEARCH, 2024, 59 (02) : 251 - 265
  • [33] An Application of Inverse Probability Weighting Estimation of Marginal Structural Models of a Continuous Exposure: Benzodiazepines and Delirium
    Hazelbag, C. Marijn
    Zaal, Irene J.
    Devlin, John W.
    Gatto, Nicolle M.
    Hoes, Arno W.
    Slooter, Arjen J. C.
    Groenwold, Rolf H. H.
    EPIDEMIOLOGY, 2015, 26 (05) : E52 - E53
  • [34] Joint modeling of concurrent binary outcomes in a longitudinal observational study using inverse probability of treatment weighting for treatment effect estimation
    Agogo, George O.
    Murphy, Terrence E.
    McAvay, Gail J.
    Allore, Heather G.
    ANNALS OF EPIDEMIOLOGY, 2019, 35 : 53 - 58
  • [35] Combining Multiple Imputation and Inverse-Probability Weighting
    Seaman, Shaun R.
    White, Ian R.
    Copas, Andrew J.
    Li, Leah
    BIOMETRICS, 2012, 68 (01) : 129 - 137
  • [36] Inverse probability weighting with error-prone covariates
    McCaffrey, Daniel F.
    Lockwood, J. R.
    Setodji, Claude M.
    BIOMETRIKA, 2013, 100 (03) : 671 - 680
  • [37] Augmented Inverse Probability Weighting and the Double Robustness Property
    Kurz, Christoph F.
    MEDICAL DECISION MAKING, 2022, 42 (02) : 156 - 167
  • [38] On Inverse Probability Weighting for Nonmonotone Missing at Random Data
    Sun, BaoLuo
    Tchetgen, Eric J. Tchetgen
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (521) : 369 - 379
  • [39] An introduction to inverse probability of treatment weighting in observational research
    Chesnaye, Nicholas C.
    Stel, Vianda S.
    Tripepi, Giovanni
    Dekker, Friedo W.
    Fu, Edouard L.
    Zoccali, Carmine
    Jager, Kitty J.
    CLINICAL KIDNEY JOURNAL, 2022, 15 (01) : 14 - 20
  • [40] Exposure Misclassification and Inverse Probability Weighting: A Plasmode Simulation
    Conover, Mitchell M.
    Rothman, Kenneth J.
    Sturmer, Til
    Poole, Charles
    Funk, Michele Jonsson
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2016, 25 : 276 - 277