An online Kernel change detection algorithm

被引:161
|
作者
Desobry, F [1 ]
Davy, M
Doncarli, C
机构
[1] Inst Rech Commun & Cybernet Nantes IRCCyN, CNRS, UMR 6597, Nantes, France
[2] Ecole Cent Lille, Lab Automat Genie Informat & Signal Lille, LAGIS, CNRS UMR 6597, F-59651 Villeneuve Dascq, France
关键词
abrupt change detection; kernel method; music segmentation; online; single-class SVM;
D O I
10.1109/TSP.2005.851098
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A number of abrupt change detection methods have been proposed in the past, among which are efficient model-based techniques such as the Generalized Likelihood Ratio (GLR) test. We consider the case where no accurate nor tractable model can be found, using a model-free approach, called Kernel change detection (KCD). KCD compares two sets of descriptors extracted online from the signal at each time instant: The immediate past set and the immediate future set. Based on the soft margin single-class Support Vector Machine (SVM), we build a dissimilarity measure in feature space between those sets, without estimating densities as an intermediary step. This dissimilarity measure is shown to be asymptotically equivalent to the Fisher ratio in the Gaussian case. Implementation issues are addressed; in particular, the dissimilarity measure can be computed online in input space. Simulation results on both synthetic signals and real music signals show the efficiency of KCD.
引用
收藏
页码:2961 / 2974
页数:14
相关论文
共 50 条
  • [31] Online database updating by change detection
    Simard, P
    Ferrie, FP
    [J]. ENHANCED AND SYNTHETIC VISION 2001, 2001, 4363 : 103 - 111
  • [32] An efficient online algorithm for square detection
    Leung, HF
    Peng, ZS
    Ting, HR
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2004, 3106 : 432 - 439
  • [33] An optimal algorithm for online square detection
    Chen, GH
    Hong, JJ
    Lu, HI
    [J]. COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2005, 3537 : 280 - 287
  • [34] Development of Online Coherency Detection Algorithm
    Powar, Rutuja
    Gawande, Prashant
    Dambhare, Sanjay
    [J]. 2022 22ND NATIONAL POWER SYSTEMS CONFERENCE, NPSC, 2022,
  • [35] An efficient algorithm for online square detection
    Leung, H. F.
    Peng, Z. S.
    Ting, H. F.
    [J]. THEORETICAL COMPUTER SCIENCE, 2006, 363 (01) : 69 - 75
  • [36] A Parallel Algorithm for Change Detection
    Mubasher, Mian Muhammad
    Farid, M. Shahid
    Khaliq, Abdul
    Yousaf, Muhammad Murtaza
    [J]. 2012 15TH INTERNATIONAL MULTITOPIC CONFERENCE (INMIC), 2012, : 201 - 208
  • [37] Online Bad Data Detection Using Kernel Density Estimation
    Uddin, Muhammad Sharif
    Kuh, Anthony
    Weng, Yang
    Ilic, Marija
    [J]. 2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [38] A New Semantic Kernel Function for Online Anomaly Detection of Software
    Parsa, Saeed
    Naree, Somaye Arabi
    [J]. ETRI JOURNAL, 2012, 34 (02) : 288 - 291
  • [39] Software online bug detection: applying a new kernel method
    Parsa, S.
    Naree, S. Arabi
    [J]. IET SOFTWARE, 2012, 6 (01) : 61 - 73
  • [40] An Online Approach for Kernel-Level Keylogger Detection and Defense
    Tian, Donghai
    Jia, Xiaoqi
    Chen, Junhua
    Hui, Changzhen
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2017, 33 (02) : 445 - 461