Building Domain Ontologies Out of Folksonomies and Linked Data

被引:4
|
作者
Garcia-Silva, Andres [1 ]
Jael Garcia-Castro, Leyla [2 ]
Garcia, Alexander [3 ]
Corcho, Oscar [1 ]
机构
[1] Univ Politecn Madrid, Ontol Engn Grp, Boadilla Del Monte 28660, Spain
[2] Univ Jaume 1, Dept Comp Languages & Syst, Castellon de La Plana 12071, Spain
[3] Linking Data IO LLC, Ft Collins, CO 80524 USA
关键词
Ontology learning; knowledge acquisition; linked data; folksonomy;
D O I
10.1142/S021821301540014X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose an automatic method for building domain ontologies where we leverage the emerging vocabulary from social tagging systems, and the existing semantics in the Linked Open Data cloud to enrich semantically the terms that shape the domain ontology. We systematically capture a domain vocabulary by searching for relevant resources in the folksonomy graph using a spreading activation strategy. We use the vocabulary to identify domain classes and relationships among them by querying knowledge bases published as linked data. We present a case study in the financial domain where we experiment with different settings and show the feasibility of our approach using real folksonomy data.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Aligning ontologies with subsumption and equivalence relations in Linked Data
    Zong, Nansu
    Nam, Sejin
    Eom, Jae-Hong
    Ahn, Jinhyun
    Joe, Hyunwhan
    Kim, Hong-Gee
    KNOWLEDGE-BASED SYSTEMS, 2015, 76 : 30 - 41
  • [32] Augmenting Linked Data Ontologies with New Object Properties
    Subhashree, S.
    Kumar, P. Sreenivasa
    NEW GENERATION COMPUTING, 2020, 38 (01) : 125 - 152
  • [33] A holistic view over ontologies for Streaming Linked Data
    Bonte, Pieter
    Ongenae, Femke
    Tommasini, Riccardo
    SEMANTIC WEB, 2024, 15 (05) : 2005 - 2033
  • [34] Augmenting Linked Data Ontologies with New Object Properties
    S. Subhashree
    P. Sreenivasa Kumar
    New Generation Computing, 2020, 38 : 125 - 152
  • [35] Visualization and interaction for ontologies and linked data-Editorial
    Ivanova, Valentina
    Lambrix, Patrick
    Lohmann, Steffen
    Pesquita, Catia
    JOURNAL OF WEB SEMANTICS, 2019, 55 : 145 - 149
  • [36] From folksonomies to ontologies: employing wisdom of the crowds to serve learning purposes
    Lux, Mathias
    Dosinger, Gisela
    INTERNATIONAL JOURNAL OF KNOWLEDGE AND LEARNING, 2007, 3 (4-5) : 515 - 528
  • [37] Improving Search in Folksonomies: A Task Based Comparison of Word Net and Ontologies
    Angeletou, Sofia
    Sabou, Marta
    Motta, Enrico
    K-CAP'09: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE, 2009, : 169 - 170
  • [38] Building linked ontologies with high precision using subclass mapping discovery
    Cruz, Isabel F.
    Palmonari, Matteo
    Caimi, Federico
    Stroe, Cosmin
    ARTIFICIAL INTELLIGENCE REVIEW, 2013, 40 (02) : 127 - 145
  • [39] Building linked ontologies with high precision using subclass mapping discovery
    Isabel F. Cruz
    Matteo Palmonari
    Federico Caimi
    Cosmin Stroe
    Artificial Intelligence Review, 2013, 40 : 127 - 145
  • [40] The role of ontologies in Linked Data, Big Data and Semantic Web applications
    Bennett, Mike
    Baclawski, Kenneth
    APPLIED ONTOLOGY, 2017, 12 (3-4) : 189 - 194